A MULTIPLICATIVE PROPERTY FOR ZERO-SUMS I

DAVID J. GRYNKIEWICZ AND CHAO LIU

Abstract

Let $G=(\mathbb{Z} / n \mathbb{Z}) \times(\mathbb{Z} / n \mathbb{Z})$ and let $k \in[0, n-1]$. We study the structure of sequences of terms from G with maximal length $|S|=2 n-2+k$ that fail to contain a nontrivial zero-sum subsequence of length at most $2 n-1-k$. For $k \leq 1$, this is the inverse question for the Davenport Constant. For $k=n-1$, this is the inverse question for the $\eta(G)$ invariant concerning short zero-sum subsequences. The structure in both these cases (known respectively as Property B and Property C) was established in a two-step process: first verifying the multiplicative property that, if the structural description holds when $n=n_{1}$ and $n=n_{2}$, then it holds when $n=n_{1} n_{2}$, and then resolving the case n prime separately. When n is prime, the structural characterization for $k \in\left[2, \frac{2 n+1}{3}\right]$ was recently established, showing S must have the form $S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(e_{1}+e_{2}\right)^{[k]}$ for some basis $\left(e_{1}, e_{2}\right)$ for G. It was conjectured that this also holds for $k \in[2, n-2]$ (when n is prime). In this paper, we extend this conjecture by dropping the restriction that n be prime and establish the following multiplicative result. Suppose $k=k_{m} n+k_{n}$ with $k_{m} \in[0, m-1]$ and $k_{n} \in[0, n-1]$. If the conjectured structure holds for k_{m} in $(\mathbb{Z} / m \mathbb{Z}) \times(\mathbb{Z} / m \mathbb{Z})$ and for k_{n} in $(\mathbb{Z} / n \mathbb{Z}) \times(\mathbb{Z} / n \mathbb{Z})$, then it holds for k in $(\mathbb{Z} / m n \mathbb{Z}) \times(\mathbb{Z} / m n \mathbb{Z})$. This reduces the full characterization question for n and k to the prime case. Combined with known results, this unconditionally establishes the structure for extremal sequences in $G=(\mathbb{Z} / n \mathbb{Z}) \times(\mathbb{Z} / n \mathbb{Z})$ in many cases, including when n is only divisible by primes at most 7 , when $n \geq 2$ is a prime power and $k \leq \frac{2 n+1}{3}$, or when n is composite and $k=n-d-1$ or $n-2 d+1$ for a proper, nontrivial divisor $d \mid n$.

1. Introduction and Preliminaries

Regarding combinatorial notation for sequences and subsums, we utilize the standardized system surrounding multiplicative strings as outlined in the references [15] [14] [19]. For the reader new to this notational system, we begin with a self-contained review.

Notation. All intervals will be discrete, so for $x, y \in \mathbb{Z}$, we have $[x, y]=\{z \in \mathbb{Z}: x \leq z \leq y\}$. More generally, if G is an abelian group, $g \in G$, and $x, y \in \mathbb{Z}$, then

$$
[x, y]_{g}=\{x g,(x+1) g, \ldots, y g\} .
$$

For $G=C_{n} \oplus C_{n}$ a (ordered) basis for G is a pair (e_{1}, e_{2}) of elements $e_{1}, e_{2} \in G$ such that $G=\left\langle e_{1}\right\rangle \oplus\left\langle e_{2}\right\rangle=C_{n} \oplus C_{n}$. For subsets $A_{1}, \ldots, A_{k} \subseteq G$, their sumset is defined as $A_{1}+\ldots+A_{k}=$ $\left\{a_{1}+\ldots+a_{k}: a_{i} \in A_{i}\right.$ for $\left.i \in[1, k]\right\}$.

[^0]Let G be an abelian group. In the tradition of Combinatorial Number Theory, a sequence of terms from G is a finite, unordered string of elements from G. We let $\mathcal{F}(G)$ denote the free abelian monoid with basis G, which consists of all (finite and unordered) sequences S of terms from G written as multiplicative strings using the boldsymbol \cdot. This means a sequence $S \in \mathcal{F}(G)$ has the form

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}
$$

with $g_{1}, \ldots, g_{\ell} \in G$ the terms in S. Then

$$
\mathrm{v}_{g}(S)=\left|\left\{i \in[1, \ell]: g_{i}=g\right\}\right|
$$

denotes the multiplicity of the terms g in S, allowing us to represent a sequence S as

$$
S=\prod_{g \in G}^{\bullet} g^{\left[\mathrm{v}_{g}(S)\right]}
$$

where $g^{[n]}=\underbrace{g \cdot \ldots \cdot g}_{n}$ denotes a sequence consisting of the term $g \in G$ repeated $n \geq 0$ times. The maximum multiplicity of a term of S is the height of the sequence, denoted

$$
\mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S): g \in G\right\}
$$

The support of the sequence S is the subset of all elements of G that are contained in S, that is, that occur with positive multiplicity in S, which is denoted

$$
\operatorname{Supp}(S)=\left\{g \in G: \operatorname{v}_{g}(S)>0\right\}
$$

The length of the sequence S is

$$
|S|=\ell=\sum_{g \in G} \mathrm{v}_{g}(S)
$$

A sequence $T \in \mathcal{F}(G)$ with $\mathrm{v}_{g}(T) \leq \mathrm{v}_{g}(S)$ for all $g \in G$ is called a subsequence of S, denoted $T \mid S$, and in such case, $S \cdot T^{[-1]}=T^{[-1]} \cdot S$ denotes the subsequence of S obtained by removing the terms of T from S, so $\mathrm{v}_{g}\left(S \cdot T^{[-1]}\right)=\mathrm{v}_{g}(S)-\mathrm{v}_{g}(T)$ for all $g \in G$.

Since the terms of S lie in an abelian group, we have the following notation regarding subsums of terms from S. We let

$$
\sigma(S)=g_{1}+\ldots+g_{\ell}=\sum_{g \in G} \mathrm{v}_{g}(S) g
$$

denote the sum of the terms of S and call S a zero-sum sequence when $\sigma(S)=0$. A minimal zero-sum sequence is a zero-sum sequence that cannot have its terms partitioned into two proper, nontrivial zero-sum subsequences. For $n \geq 0$, let

$$
\begin{aligned}
& \Sigma_{n}(S)=\left\{\sigma(T): T|S,|T|=n\}, \quad \Sigma_{\leq n}(S)=\{\sigma(T): T|S, 1 \leq|T| \leq n\}, \quad \text { and }\right. \\
& \Sigma(S)=\{\sigma(T): T|S,|T| \geq 1\}
\end{aligned}
$$

denote the variously restricted collections of subsums of S. The sequence S is zero-sum free if $0 \notin \Sigma(S)$. Finally, if $\varphi: G \rightarrow G^{\prime}$ is a map, then

$$
\varphi(S)=\varphi\left(g_{1}\right) \cdot \ldots \cdot \varphi\left(g_{\ell}\right) \in \mathcal{F}\left(G^{\prime}\right)
$$

denotes the sequence of terms from G^{\prime} obtained by applying φ to each term from S.
Background. Let G be a finite abelian group. A classic topic in Combinatorial Number Theory is the study of conditions on sequences that ensure the existence of zero-sum subsequences with prescribed properties. Apart from the intrinsic combinatorial interest in such questions, they are also important when studying properties of factorization in Krull Domains and, more generally, in (Transfer) Krull Monoids. See [14] 15].

The most classic zero-sum invariant is the Davenport Constant $\mathrm{D}(G)$, defined as the minimal length such that any sequence of terms from G with length at least $\mathrm{D}(G)$ contains a nontrivial zero-sum subsequence. It is well-known that $\mathrm{D}(G)$ can be equivalently defined as the maximal length of a minimal zero-sum sequence. Indeed, $\mathrm{D}(G)-1$ is, by definition, the maximal length of a zero-sum free sequence T, and then one readily notes that $T \cdot-\sigma(T)$ will be a minimal zero-sum sequence of length $\mathrm{D}(G)$. This shows there are minimal zero-sums of length $\mathrm{D}(G)$. Conversely, if S is any minimal zero-sum, then $S \cdot g^{[-1]}$ is zero-sum free for any $g \in \operatorname{Supp}(G)$, ensuring no minimal zero-sum can have length exceeding $\mathrm{D}(G)$.

The precise value of $\mathrm{D}(G)$ is open in general and known only for a few small families of abelian groups, including p-groups and groups of rank at most two [14]. In particular [14, Theorem 5.8.3],

$$
\mathrm{D}\left(C_{n} \oplus C_{n}\right)=2 n-1
$$

for $n \geq 1$. This is an old result of Olson [25] or van Emde Boas and Kruyswijk [6] whose proof required a more refined constant $\eta(G)$, defined as the minimal length such that any sequence of terms from G with length at least $\eta(G)$ contains a nontrivial zero-sum subsequence of length at $\operatorname{most} \exp (G)$. For $G=C_{n} \oplus C_{n}$, we have [25] [6] [14, Theorem 5.8.3]

$$
\eta\left(C_{n} \oplus C_{n}\right)=3 n-2 .
$$

As a special case of a more general constant [3] [12], Delorme, Ordaz and Quiroz introduced [4] the refined constant $\mathbf{s}_{\leq \ell}(G)$ defined as the minimal length such that any sequence of terms from G with length at least $\mathbf{s}_{\leq \ell}(G)$ contains a nontrivial zero-sum subsequence of length at most ℓ, i.e.,

$$
|S| \geq \mathbf{s}_{\leq \ell}(G) \quad \text { implies } \quad 0 \in \Sigma_{\leq \ell}(S) .
$$

Relations between $\mathrm{s}_{\leq \ell}(G)$ and Coding Theory may be found in [3], and other related works dealing with $\mathbf{s}_{\leq \ell}(G)$ include [7] [29] [11]. When $\ell<\exp (G)$, we have $\mathbf{s}_{\leq \ell}(G)=\infty$; when $\ell=$ $\exp (G)$, we have $\mathbf{s}_{\leq \ell}(G)=\eta(G)$; and when $\ell \geq \mathrm{D}(G)$, we have $\mathbf{s}_{\leq \ell}(G)=\mathrm{D}(G)$. Thus, concerning the constant $\mathbf{s}_{\leq \ell}(G)$, the range of interest is $\ell \in[\exp (G), \mathrm{D}(G)]$, and $\mathbf{s}_{\leq \ell}(G)$ interpolates between the well-studied invariants $\eta(G)$ and $\mathrm{D}(G)$. For the case of $G=C_{n} \oplus C_{n}$, Chulin Wang and Kevin Zhao determined the exact value of $s_{\leq \ell}(G)$, showing [32]

$$
\mathbf{s}_{\leq D-k}\left(C_{n} \oplus C_{n}\right)=D+k, \quad \text { for } k \in[0, D-\exp (G)],
$$

where $D=\mathrm{D}\left(C_{n} \oplus C_{n}\right)$. Since $\mathrm{D}\left(C_{n} \oplus C_{n}\right)=2 n-1$, this can be restated as

$$
\mathbf{s}_{\leq 2 n-1-k}\left(C_{n} \oplus C_{n}\right)=2 n-1+k, \quad \text { for } k \in[0, n-1] .
$$

With the value $\mathbf{s}_{\leq 2 n-1-k}\left(C_{n} \oplus C_{n}\right)=2 n-1+k$ established, there arises the associated inverse question characterizing all extremal sequences having maximal length $2 n-2+k=$ $\mathrm{s}_{\leq 2 n-1-k}\left(C_{n} \oplus C_{n}\right)-1$ with $0 \notin \Sigma_{\leq 2 n-1-k}(S)$. For $k=0$, this amounts to characterizing all zero-sum free sequences of maximal length $2 n-2=\mathrm{D}(G)-1$. For $k=1$, this amounts to characterizing all minimal zero-sum sequences of maximal length $2 n-1=\mathrm{D}(G)$. In view of our previous commentary, these two cases are equivalent to each other, the extremal sequences for $k=0$ being simply the extremal sequences for $k=1$ with any one term removed. For $k=n-1$, this amounts to characterizing all extremal sequences of length $3 n-3=\eta(G)-1$ with $0 \notin \Sigma_{\leq n}(S)$.

The precise structure in both the case $k \leq 1$ and the case $k=n-1$ is known. For $k \leq 1$, this is achieved by combining the individual results of Gao, Geroldinger, Grynkiewicz and Reiher from [8] [10] [21] [28] with the numerical verification of the case when $n=9$ [2]. The characterization of the extremal sequences for the Davenport constant has since proved quite useful, for instance being employed as machinery for the results in [1] [13] [16] [17] [26] [30] [27]. Since we will need to use both known cases heavily, we introduce some terminology.

A sequence S of terms from $G=C_{n} \oplus C_{n}$ is said to have Property A if there is a basis $\left(e_{1}, e_{2}\right)$ for $G=C_{n} \oplus C_{n}$ such that $\operatorname{Supp}(S) \subseteq\left\{e_{1}\right\} \cup\left(\left\langle e_{1}\right\rangle+e_{2}\right)$. We say that the group $G=C_{n} \oplus C_{n}$ has Property A if every minimal zero-sum sequence S with $|S|=\mathrm{D}(G)=2 n-1$ satisfies Property A. A sequence S of terms from $G=C_{n} \oplus C_{n}$ is said to have Property B if $\mathrm{h}(S)=\exp (G)-1=n-1$, that is, S has some term e_{1} with multiplicity $n-1$. We say that the group $G=C_{n} \oplus C_{n}$ has Property B if every minimal zero-sum sequence S with $|S|=\mathrm{D}(G)=2 n-1$ satisfies Property B. A simple argument shows that a minimal zero-sum sequence S with $|S|=\mathrm{D}(G)=2 n-1$ satisfying Property A with basis $\left(e_{1}, e_{2}\right)$ has the form

$$
\begin{equation*}
S=e_{1}^{n-1} \cdot \prod_{i \in[1, n]}^{\bullet}\left(x_{i} e_{1}+e_{2}\right) \tag{1}
\end{equation*}
$$

for some $x_{1}, \ldots, x_{n} \in[0, n-1]$ with $x_{1}+\ldots+x_{n} \equiv 1 \bmod n$. In particular, S satisfies Property B. It is also not hard to show (see [21]) that a minimal zero-sum sequence S with $|S|=\mathrm{D}(G)=2 n-1$ that satisfies Property B, say with $\mathrm{v}_{e_{1}}(S)=\mathrm{h}(S)=n-1$, has a basis $\left(e_{1}, e_{2}\right)$ such that S has the form given in (1), and thus satisfies Property A with respect to the basis $\left(e_{1}, e_{2}\right)$. Note, when S has two distinct elements e_{1} and e_{2} both with multiplicity $n-1$, this ensures $S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(e_{1}+e_{2}\right)$ with $\left(e_{1}, e_{2}\right)$ and $\left(e_{2}, e_{1}\right)$ both bases for G with respect to which S satisfies Property A.

Any sequence S having the form given in (11) is easily seen to be a minimal zero-sum sequence. The converse, that every minimal zero-sum sequence S of maximal length $|S|=\mathrm{D}(G)=2 n-1$ must have the form given in (11), is the structural characterization of extremal sequences for the Davenport constant that was previously alluded to, which required several years and the
combined effort of all the results from [8] [10] [21] [28] (as well as the individual verification of the case $n=9[2]$).

The precise structure of all extremal sequences for $k=n-1$ was achieved in [30] 9, and relies on the characterization in the case $k \leq 1$. We continue with the commonly used terminology in this case.

A sequence S of terms from $G=C_{n} \oplus C_{n}$ is said to have Property C if every term of S has multiplicity $n-1$. We say that the group $G=C_{n} \oplus C_{n}$ has Property C if every sequence S with $|S|=\eta(G)-1=3 n-3$ and $0 \notin \Sigma_{\leq n}(S)$ must satisfy Property C. It was shown in [9] that, assuming Property B (equivalently, property A) holds for G, then every sequence S with $|S|=\eta(G)-1=3 n-3$ and $0 \notin \Sigma_{\leq n}(S)$ must satisfy Property C, i.e., that Property A/B holding for $G=C_{n} \oplus C_{n}$ implies that Property C holds for G. Rather surprisingly, in contrast to the case for Property A/B, this does not easily yield a precise structural description of all possibilities for extremal sequences S when $k=n-1$. For $n=p$ prime, a derivation of the precise characterization from Property C can be found in [5], and the derivation of the precise characterization from Property C in the general case (when n may be composite) follows from a result of Schmid [30. All such sequences satisfy Property A, and thus have the form

$$
\begin{equation*}
S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(x e_{1}+e_{2}\right)^{[n-1]} \tag{2}
\end{equation*}
$$

for some basis $\left(e_{1}, e_{2}\right)$ for $G=C_{n} \oplus C_{n}$ and some $x \in[1, n-1]$ with $\operatorname{gcd}(x, n)=1$.
In view of the discussion above, the inverse problem for $\mathbf{s}_{\leq 2 n-1-k}\left(C_{n} \oplus C_{n}\right)$ is complete for the boundary values $k \leq 1$ and $k=n-1$. For the interior values $k \in[2, n-2]$ (and thus, for $n \geq 4$), a precise characterization of all extremal sequences S with length $|S|=\mathbf{s}_{\leq 2 n-1-k}\left(C_{n} \oplus C_{n}\right)-1$ but $0 \notin \Sigma_{\leq 2 n-1-k}(S)$ is still open. There is partial progress in the case when $n=p$ is prime achieved in [23], where the precise structure is characterized for $G=C_{p} \oplus C_{p}$ when $k \in\left[2, \frac{2 p+1}{3}\right]$ with $p \geq 5$, showing all such extremal sequences must have the form

$$
S=e_{1}^{[p-1]} \cdot e_{2}^{[p-1]} \cdot\left(e_{1}+e_{2}\right)^{[k]}
$$

for some basis (e_{1}, e_{2}) for $G=C_{p} \oplus C_{p}$. It was conjectured in [23] [32] that the same structure should hold for any $k \in[2, p-2]$. Naturally extending this conjecture to composite values, we obtain the following conjecture that, if true, would fully characterize the structure of all extremal sequences for the zero-sum invariant $\mathbf{s}_{\leq 2 n-1-k}\left(C_{n} \oplus C_{n}\right)$.

Conjecture 1.1. Let $n \geq 2$, let $G=C_{n} \oplus C_{n}$, let $k \in[0, n-1]$, and let S be a sequence of terms from G with

$$
|S|=2 n-2+k \quad \text { and } \quad 0 \notin \Sigma_{\leq 2 n-1-k}(S) .
$$

Then there exists a basis $\left(e_{1}, e_{2}\right)$ for G such that the following hold.

1. If $k=0$, then $S \cdot g$ satisfies the description given in Item 2, where $g=-\sigma(S)$.
2. If $k=1$, then

$$
S=e_{1}^{[n-1]} \cdot \prod_{i \in[1, m n]}^{\bullet}\left(x_{i} e_{1}+e_{2}\right)
$$

for some $x_{1}, \ldots, x_{m n} \in[0, n-1]$ with $x_{1}+\ldots+x_{m n} \equiv 1 \bmod n$.
3. If $k \in[2, n-2]$, then

$$
S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(e_{1}+e_{2}\right)^{[k]}
$$

4. If $k=n-1$, then

$$
S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(x e_{1}+e_{2}\right)^{[n-1]}
$$

for some $x \in[1, n-1]$ with $\operatorname{gcd}(x, n)=1$.
Per the discussion above, Parts 1, 2 and 4 in Conjecture 1.1 are known, and Part 3 holds when $n=p$ is prime and $k \leq \frac{2 p+1}{3}$. It was also shown in [23] that Conjecture 1.1. 3 holds when $n=p^{s} \geq 5$ is a prime power with $k \leq \frac{2 n+1}{3}$ and $p \nmid k$. In general, we say that Conjecture 1.1 holds for k in $C_{n} \oplus C_{n}$ if Conjecture 1.1 is true when $G=C_{n} \oplus C_{n}$ for the given value $k \in[0, n-1]$. The main goal of this paper is Theorems [1.2, which shows that the structural description given in Conjecture [1.1.3 is multiplicative, thus reducing the full characterization problem for $\mathbf{s}_{\leq 2 n-1-k}\left(C_{n} \oplus C_{n}\right)$ to the case when $n=p$ prime, so the case when $G=C_{p} \oplus C_{p}$ with $p \geq 11$ prime (in view of Corollary 1.3). This reduction to the prime case is the main aim of the paper and emulates the strategy successfully used to characterize the extremal sequences for the Davenport Constant (the case $k \leq 1$), where the characterization problem was first reduced by a similar multiplicative result to the prime case [8] [10] [21, with the prime case later resolved by independent methods [28]. We remark that Schmid later reduced the characterization of extremal sequences for the Davenport Constant, in a general rank two abelian group, to the case $C_{n} \oplus C_{n}$ [31], and a forthcoming work [22] aims to similarly extend our methods to general rank two abelian groups.

Theorem 1.2. Let $n, m \geq 2$ and let $k \in[0, m n-1]$ with $k=k_{m} n+k_{n}$, where $k_{m} \in[0, m-1]$ and $k_{n} \in[0, n-1]$. Suppose Conjecture 1.1 holds for k_{n} in $C_{n} \oplus C_{n}$ and either Conjecture 1.1 also holds for k_{m} in $C_{m} \oplus C_{m}$ or else $k_{n} \geq 1, k_{m} \in[1, m-2]$ and Conjecture 1.1 also holds for $k_{m}+1$ in $C_{m} \oplus C_{m}$. Then Conjecture 1.1 holds for k in $C_{m n} \oplus C_{m n}$.

While the reduction to the prime case is our main motivating goal, nonetheless, combining the known instances of Conjecture 1.1 with Theorem 1.2 yields many new cases where Conjecture 1.1 is established here without condition. In particular, we have the following corollaries, showing that Conjecture 1.1 is true when n is only divisible by primes at most 7 , or when n is a prime power with $k \leq \frac{2 n+1}{3}$, or when n is composite and $k=n-d-1$ or $n-2 d+1$ for a proper, nontrivial divisor $d \mid n$. The second corollary, in the case $m=1$, removes the restriction $p \nmid k$ in [23, Theorem 5].

Corollary 1.3. If $n=2^{s_{1}} 3^{s_{2}} 5^{s_{3}} 7^{s_{4}} \geq 2$ with $s_{1}, s_{2}, s_{3}, s_{4} \geq 0$, then Conjecture 1.1 holds in $C_{n} \oplus C_{n}$ for all $k \in[0, n-1]$.

Corollary 1.4. For any prime power $n \geq 2$, Conjecture 1.1 holds in $C_{n} \oplus C_{n}$ for all $k \leq \frac{2 n+1}{3}$.

Corollary 1.5. For $n \geq 4$ composite with $d \mid n$ a proper, nontrivial divisor, Conjecture 1.1 holds for $k=n-d-1$ and for $k=n-2 d+1$ in $C_{n} \oplus C_{n}$.

2. Preparatory Lemmas

The goal of this section is to collect together several properties about sequences having the structure given in Conjecture 1.1. However, we will also need the following two results. The first was a conjecture of Hamidoune established in [20, Theorem 1].

Theorem A. Let G be a finite abelian group, let $k \geq 1$ and let $S \in \mathcal{F}(G)$ be a sequence with $|S| \geq|G|+1$ and $k \leq|\operatorname{Supp}(S)|$. If $\mathrm{h}(S) \leq|G|-k+2$ and $0 \notin \Sigma_{|G|}(S)$, then $\left|\Sigma_{|G|}(S)\right| \geq$ $|S|-|G|+k-1$.

The second is [21, Lemma 3.2], which is the corrected version of [10, Proposition 4.2].
Theorem B. Let $n \geq 2$, let $s \geq 3$ and let $G=C_{n} \oplus C_{n}$. If $S \in \mathcal{F}(G)$ is a zero-sum sequence with $|S|=s n-1$ and $0 \notin \Sigma_{\leq n-1}(S)$, then there is a basis $\left(e_{1}, e_{2}\right)$ for G such that either

1. $\operatorname{Supp}(S) \subseteq\left\{e_{1}\right\} \cup\left(\left\langle e_{1}\right\rangle+e_{2}\right)$ and $\mathrm{v}_{e_{1}}(S) \equiv-1 \bmod n$, or
2. $S=e_{1}^{[a n]} \cdot e_{2}^{[b n-1]} \cdot\left(x e_{1}+e_{2}\right)^{[c n-1]} \cdot\left(x e_{1}+2 e_{2}\right)$ for some $x \in[2, n-2]$ with $\operatorname{gcd}(x, n)=1$, and some $a, b, c \geq 1$ with $a+b+c=s$.

We begin now with a stability result for sequences satisfying Conjecture 1.1 when $k \geq 1$.
Lemma 2.1. Let $n \geq 2$, let $k \in[1, n-1]$, let $G=C_{n} \oplus C_{n}$, and let $S \in \mathcal{F}(G)$ with $|S|=2 n-2+k$ and $0 \notin \Sigma_{\leq 2 n-1-k}(S)$ such that Conjecture 1.1 holds for S. If $x \in \operatorname{Supp}(S)$, $y \in G$, and $S^{\prime}=S \cdot x^{[-1]} \cdot y$ also has $0 \notin \Sigma_{\leq 2 n-1-k}\left(S^{\prime}\right)$ with Conjecture 1.1 holding for S^{\prime}, then $x=y$.

Proof. If $k=1$, then S and S^{\prime} satisfying the conclusion of Conjecture 1.1 implies they are both zero-sum sequences, which forces $x=y$. If $n=2$, then $k=1 \in[1, n-1]$ is forced. If $k \in[2, n-2]$, then $n \geq 4$ and $S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(e_{1}+e_{2}\right)^{[k]}$ with $e_{1}+\left(e_{1}+e_{2}\right) \neq e_{2}$ and $e_{2}+\left(e_{1}+e_{2}\right) \neq e_{1}$ in view of $n \geq 3$. Since $n \geq 3$ and $k \geq 2$, we also guaranteed $e_{1}, e_{2}, e_{1}+e_{2} \in \operatorname{Supp}\left(S \cdot x^{[-1]}\right)$. Consequently, since S^{\prime} also satisfies the conclusion of Conjecture 1.1, it must do so with respect to the basis $\left(e_{1}, e_{2}\right)$, forcing $x=y$. Finally, if $k=n-1$ and $n \geq 3$, then $S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot e_{3}^{[n-1]}$ and $\operatorname{Supp}(S)=\operatorname{Supp}\left(S \cdot x^{[-1]}\right) \subseteq \operatorname{Supp}\left(S^{\prime}\right)$ in view of $n \geq 3$. Thus, since S^{\prime} also satisfies the conclusion of Conjecture 1.1, it must do so with $\operatorname{Supp}\left(S^{\prime}\right)=\operatorname{Supp}(S)$, forcing $x=y$.

We continue by showing how Property A implies the more detailed structure given in Conjecture 1.1 .

Lemma 2.2. Let $n \geq 4$, let $k \in[2, n-2]$, let $G=C_{n} \oplus C_{n}$, and let $S \in \mathcal{F}(G)$ be a sequence with $|S|=2 n-2+k$ and $0 \notin \Sigma_{\leq 2 n-1-k}(S)$. Suppose there are $e_{1}, e_{2} \in G$ with $\operatorname{Supp}(S) \subseteq$ $\left\{e_{1}\right\} \cup\left(\left\langle e_{1}\right\rangle+e_{2}\right)$. Then there is some $f_{2} \in\left\langle e_{1}\right\rangle+e_{2}$ such that $\left(e_{1}, f_{2}\right)$ is a basis for G and $S=e_{1}^{[n-1]} \cdot f_{2}^{[n-1]} \cdot\left(e_{1}+f_{2}\right)^{[k]}$.

Proof. By hypothesis, $\operatorname{Supp}(S) \subseteq\left\{e_{1}\right\} \cup\left(\left\langle e_{1}\right\rangle+e_{2}\right) \subseteq\left\langle e_{1}, e_{2}\right\rangle$. Let $G^{\prime}=\left\langle e_{1}, e_{2}\right\rangle \cong C_{m_{1}} \oplus C_{m_{2}}$ with $m_{1} \mid m_{2}$. Let $k^{\prime}=k+2 n-m_{1}-m_{2} \geq k$. If $G^{\prime}=\left\langle e_{1}, e_{2}\right\rangle$ were a proper subgroup, then the hypotheses $|S|=2 n-2+k=m_{1}+m_{2}-1+\left(k^{\prime}-1\right)$ ensures that S contains a nontrivial zero-sum with length at $\operatorname{most} \max \left\{m_{1}+m_{2}-1-\left(k^{\prime}-1\right), m_{2}\right\}=\max \left\{2\left(m_{1}+m_{2}-n\right)-k, m_{2}\right\} \leq$ $\max \{2 n-1-k, n\}=2 n-1-k$, contradicting the hypothesis $0 \notin \Sigma_{\leq 2 n-1-k}(S)$. Therefore $G^{\prime}=\left\langle e_{1}, e_{2}\right\rangle=G$, implying that $\left(e_{1}, e_{2}\right)$ is a basis for G.

In view of our hypotheses, we have $S=e_{1}^{[\ell]} \cdot \prod_{i \in[1,2 n-2+k-\ell]}^{\bullet}\left(x_{i} e_{1}+e_{2}\right)$ for some $\ell \geq 0$ and $x_{i} \in[0, n-1]$. We must have $\ell \leq n-1$, else S will contain an n-term zero-sum, contrary to the hypothesis $0 \notin \Sigma_{\leq 2 n-1-k}(S)$. Let $S_{2}=\prod_{i \in[1,2 n-2+k-\ell]}^{\bullet} x_{i} e_{1}$ and $S_{1}=e_{1}^{[\ell]}$. Then $\left|S_{2}\right|=$ $2 n-2+k-\ell \geq n-1+k \geq n+1$. We also have $\mathrm{h}\left(S_{2}\right) \leq n-1$, else S again contains an n-term zero-sum, contrary to hypothesis. Thus $\left|\operatorname{Supp}\left(S_{2}\right)\right| \geq 2$.

Suppose $\left|S_{1}\right|=\ell \leq n-1-k$. Then the hypothesis $0 \notin \Sigma_{\leq 2 n-1-k}(S)$ implies $0 \notin \Sigma_{n}\left(S_{2}\right)+$ $\left(\Sigma\left(S_{1}\right) \cup\{0\}\right)$, whence $\Sigma_{n}\left(S_{2}\right) \subseteq[1, n-1-\ell]_{e_{1}}$. In particular, $\left|\Sigma_{n}\left(S_{2}\right)\right| \leq n-1-\ell$. However, applying Theorem A to S_{2} (using $k=2$), we obtain $\left|\Sigma_{n}\left(S_{2}\right)\right| \geq\left|S_{2}\right|-n+1=n-1+k-\ell>$ $n-1-\ell$, contradicting what was just noted. So we can now assume $\left|S_{1}\right|=\ell \geq n-k$.

Since $\left|S_{1}\right|=\ell \geq n-k$, the hypothesis $0 \notin \Sigma_{\leq 2 n-1-k}(S)$ implies that $0 \notin \Sigma_{n}\left(S_{2}\right)+$ $\left(\Sigma_{\leq n-k-1}\left(S_{1}\right) \cup\{0\}\right)$, whence $\Sigma_{n}\left(S_{2}\right) \subseteq[1, k]_{e_{1}}$. In particular, $\left|\Sigma_{n}\left(S_{2}\right)\right| \leq k$. Applying Theorem A to S_{2} (using $k=2$), and then using the estimate $\ell \leq n-1$, we obtain $\left|\Sigma_{n}\left(S_{2}\right)\right| \geq$ $\left|S_{2}\right|-n+1=n-1+k-\ell \geq k$. Thus equality must hold in all these estimates. In particular, $\Sigma_{n}\left(S_{2}\right)=[1, k]_{e_{1}}, \ell=n-1$, and $\left|\Sigma_{n}\left(S_{2}\right)\right|=\left|S_{2}\right|-n+1$. It now follows from Theorem A applied to $S_{2}($ using $k=3)$ that $\left|\operatorname{Supp}\left(S_{2}\right)\right|=2$.

Let $y e_{1} \in \operatorname{Supp}\left(S_{2}\right)$ be an element with maximum multiplicity in S_{2}, and let $f_{2}=y e_{1}+e_{2}$. Then $\left(e_{1}, f_{2}\right)$ is also a basis for G and

$$
\begin{equation*}
S=e_{1}^{[n-1]} \cdot f_{2}^{[n-1-r]} \cdot\left(x e_{1}+f_{2}\right)^{k+r} \tag{3}
\end{equation*}
$$

for some $x \in[1, n-1]$ and $r \in\left[0, \frac{n-1-k}{2}\right]$. Let $S_{2}^{\prime}=0^{[n-1-r]} \cdot\left(x e_{1}\right)^{[k+r]}$. Repeating the argument of the previous paragraph using S_{2}^{\prime} in place of S_{2}, we again conclude that $\Sigma_{n}\left(S_{2}^{\prime}\right)=[1, k]_{e_{1}}$. However, in view of the structure of S given by (3), we have $\Sigma_{n}\left(S_{2}^{\prime}\right)=(r+1) x e_{1}+[0, k-1]_{x e_{1}}$. Thus

$$
\begin{equation*}
[1, k]_{e_{1}}=(r+1) x e_{1}+[0, k-1]_{x e_{1}} . \tag{4}
\end{equation*}
$$

Since $k \geq 2$, the set $[1, k]_{e_{1}}$ is not contained in a coset of a proper subgroup of $\left\langle e_{1}\right\rangle$. Hence (4) ensures $\left\langle x e_{1}\right\rangle=\left\langle e_{1}\right\rangle$. The left-hand side of (4) is an arithmetic progression with difference e_{1} and length k, with $2 \leq k \leq n-2=\operatorname{ord}\left(e_{1}\right)-2$. It is well known and easily derived that, for such sets, the difference e_{1} is unique up to sign. The right-hand side of (4) is also an arithmetic progression with difference $x e_{1}$ and length k, with $2 \leq k \leq n-2=\operatorname{ord}\left(x e_{1}\right)-2$. Thus, by the uniqueness of the difference, it follows that $x e_{1}= \pm e_{1}$.

If $x e_{1}=e_{1}$, then (4) forces $r=0$ in view of $k<n$, yielding the desired structure for S. If $x e_{1}=-e_{1}$, then (4) forces $r=n-k-1$ in view of $k<n$. However, since $r \in\left[0, \frac{n-1-k}{2}\right]$, this in only possible if $k \geq n-1$, which is contrary to hypothesis.

The following lemma shows that the extension of a sequence satisfying Conjecture 1.1, obtained by concatenating an additional term, also satisfies Conjecture 1.1 .

Lemma 2.3. Let $n \geq 2$, let $k \in[1, n-1]$ with either $k=1$ or $k \in[1, n-2]$, let $G=C_{n} \oplus C_{n}$, and let $S \in \mathcal{F}(G)$ be a sequence with $|S|=2 n-2+k$ and $0 \notin \Sigma_{\leq 2 n-1-k}(S)$ such that Conjecture 1.1 holds for S. Suppose there is some $g \in G$ such that $0 \notin \Sigma_{\leq 2 n-2-k}(S \cdot g)$. Then there exists a basis $\left(e_{1}, e_{2}\right)$ for G such that $S \cdot g=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(e_{1}+e_{2}\right)^{[k+1]}$ with $g=e_{1}+e_{2}$. In particular, Conjecture 1.1 holds for $S \cdot g$ (for $k \leq n-2$).

Proof. Let $\left(e_{1}, e_{2}\right)$ be an arbitrary basis for which Conjecture 1.1 holds for S. Let $g=x_{1} e_{1}+x_{2} e_{2}$ with $x_{1}, x_{2} \in[0, n-1]$.

Case 1: $k \in[2, n-2]$.
In this case, $n \geq 4$ and $S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(e_{1}+e_{2}\right)^{[k]}$. By symmetry, we can w.l.o.g. assume $x_{1} \geq x_{2}$. If $x_{2}=0$, then $S \cdot g$ contains n terms from $\left\langle e_{1}\right\rangle \cong C_{n}$, and thus contains a zero-sum subsequence of length at most $\mathrm{D}\left(C_{n}\right)=n$, contradicting that $0 \notin \Sigma_{2 n-2-k}(S \cdot g)$ (in view of $k \leq n-2)$. Therefore $x_{1} \geq x_{2} \geq 1$. If $x_{1}=x_{2}=1$, the desired conclusion follows, so we can assume $x_{1} \geq 2$. If $x_{1} \geq n-k$, then $e_{2}^{\left[x_{1}-x_{2}\right]} \cdot\left(e_{1}+e_{2}\right)^{\left[n-x_{1}\right]} \cdot\left(x_{1} e_{1}+x_{2} e_{2}\right)$ is a zero-sum subsequence of $S \cdot g$ with length $n-x_{2}+1 \leq n$, contradicting that $0 \notin \Sigma_{2 n-2-k}(S \cdot g)$. On the other hand, if $x_{2} \leq x_{1} \leq n-k$, then $e_{1}^{\left[n-k-x_{1}\right]} \cdot e_{2}^{\left[n-k-x_{2}\right]} \cdot\left(e_{1}+e_{2}\right)^{[k]} \cdot\left(x_{1} e_{1}+x_{2} e_{2}\right)$ is a zero-sum subsequence of $S \cdot g$ with length $2 n-k-x_{1}-x_{2}+1 \leq 2 n-2-k$ (with the latter inequality in view of $x_{1} \geq 2$ and $x_{2} \geq 1$), again contradicting that $0 \notin \Sigma_{2 n-2-k}(S \cdot g)$.

Case 2: $k=1$.
In this case, $n \geq 2$ and

$$
S=e_{1}^{[n-1]} \cdot \prod_{i \in[1, n]}^{\bullet}\left(y_{i} e_{1}+e_{2}\right)
$$

for some $y_{1}, \ldots, y_{n} \in[0, n-1]$ with $y_{1}+\ldots+y_{n} \equiv 1 \bmod n$. If $n=2$, then $S=e_{1} \cdot e_{2} \cdot\left(e_{1}+e_{2}\right)$, and our hypothesis $0 \notin \Sigma_{\leq 2 n-2-k}(S \cdot g)=\Sigma_{\leq 1}(S \cdot g)$ simply means $g \neq 0$. In this case, replacing the basis $\left(e_{1}, e_{2}\right)$ by a basis $\left(f_{1}, f_{2}\right)$ with $g \notin\left\{f_{1}, f_{2}\right\}$, we find $S=f_{1} \cdot f_{2} \cdot\left(f_{1}+f_{2}\right)$ with $g=f_{1}+f_{2}$, and the desired result follows. Therefore we now assume $n \geq 3$, so $k=1 \leq n-2$.

If $x_{2}=0$, then $S \cdot g$ contains n terms from $\left\langle e_{1}\right\rangle \cong C_{n}$, and thus contains a zero-sum subsequence of length at most $\mathrm{D}\left(C_{n}\right)=n$, contradicting that $0 \notin \Sigma_{2 n-2-k}(S \cdot g)$ (in view of $k \leq n-2$). Therefore $x_{2} \geq 1$.

Let $S_{2}=\prod_{i \in[1, n]}^{\bullet} y_{i} e_{1}$. For any $\left(-x_{1}+z\right) e_{1} \in \Sigma_{n-x_{2}}\left(S_{2}\right)$, where $z \in[1, n]$, we have a subset $I \subseteq[1, n]$ with $|I|=n-x_{2}$ and $\sum_{i \in I}\left(y_{i} e_{1}+e_{2}\right)=\left(-x_{1}+z\right) e_{1}+\left(n-x_{2}\right) e_{2}$, meaning
$e_{1}^{[n-z]} \cdot\left(x_{1} e_{1}+x_{2} e_{2}\right) \cdot \prod_{i \in I}^{\bullet}\left(y_{i} e_{1}+e_{2}\right)$ is a zero-sum subsequence of $S \cdot g$ of length $2 n-z+1-x_{2}$. Since $0 \notin \Sigma_{\leq 2 n-2-k}(S \cdot g)=\Sigma_{2 n-3}(S \cdot g)$, this forces

$$
\begin{equation*}
z+x_{2} \leq 3 \tag{5}
\end{equation*}
$$

Now S_{2} is a sequence of n terms from a cyclic group of order n with $n-x_{2} \in[1, n-1]$. Moreover, since $y_{1}+\ldots+y_{n} \equiv 1 \bmod n$, we have $\left|\operatorname{Supp}\left(S_{2}\right)\right| \geq 2$.

If $T \mid S_{2}$ is any subsequence of length $n-x_{2}$, then $n-x_{2} \in[1, n-1]=\left[1,\left|S_{2}\right|-1\right]$ ensures that both T and $T^{[-1]} \cdot S_{2}$ contain at least one term, and since $\left|\operatorname{Supp}\left(S_{2}\right)\right| \geq 2$, it is thus possible to find terms $g \in \operatorname{Supp}(T)$ and $h \in \operatorname{Supp}\left(T^{[-1]} \cdot S_{2}\right)$ with $g \neq h$. This ensures that $T \cdot g^{[-1]} \cdot h$ is also a subsequence of S_{2} with length $n-x_{2}$, and one with sum $\sigma(T)-g+h \neq \sigma(T)$. Thus $\left|\Sigma_{n-x_{2}}\left(S_{2}\right)\right| \geq 2$, meaning it is possible to find I as defined above with $z \geq 2$. Combined with (5) and $x_{2} \geq 1$, it follows that only $x_{2}=1$ is possible, whence $g=x_{1} e_{1}+e_{2}$. Since $\left(e_{1}, x e_{1}+e_{2}\right)$ is also a basis for which Conjecture 1.1 holds for S, for any $x \in \mathbb{Z}$, we can replace the arbitrary basis $\left(e_{1}, e_{2}\right)$ for which Conjecture 1.1 holds for S with the basis $\left(e_{1},\left(x_{1}-1\right) e_{1}+e_{2}\right)$, thereby allowing us to w.l.o.g. assume $x_{1}=1$ in view of $e_{1}+\left(\left(x_{1}-1\right) e_{1}+e_{2}\right)=g$. Thus we now have $g=e_{1}+e_{2}$ with $x_{1}=x_{2}=1$.

Since $x_{2}=1$, we have

$$
\Sigma_{n-x_{2}}\left(S_{2}\right)=\Sigma_{n-1}\left(S_{2}\right)=\sigma\left(S_{2}\right)-\Sigma_{1}\left(S_{2}\right)=e_{1}-\operatorname{Supp}\left(S_{2}\right),
$$

with the final inequality above in view of $y_{1}+\ldots+y_{n} \equiv 1 \bmod n$. Since $x_{2}=1$, (5) ensures that $z \leq 2$, which combined with $z \in[1, n]$ forces $z \in\{1,2\}$. Thus

$$
e_{1}-\operatorname{Supp}\left(S_{2}\right)=\Sigma_{n-x_{2}}\left(S_{2}\right) \subseteq\left\{-x_{1} e_{1}+e_{1},-x_{1} e_{1}+2 e_{1}\right\}=\left\{0, e_{1}\right\},
$$

whence

$$
\operatorname{Supp}\left(S_{2}\right)=\left\{0, e_{1}\right\}
$$

in view of $\left|\operatorname{Supp}\left(S_{2}\right)\right| \geq 2$. It follows that $y_{i} \equiv 0$ or $1 \bmod n$ for every $i \in[1, n]$. Letting $a \in$ $[1, n-1]$ be the number of $i \in[1, n]$ with $y_{i} \equiv 1 \bmod m$, we find $1 \equiv y_{1}+\ldots+y_{n} \equiv a+(n-a)(0)$ $\bmod n$, implying $a \equiv 1 \bmod n$. Thus $S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(e_{1}+e_{2}\right)$ with $g=e_{1}+e_{2}$, as desired.

The following lemma is the reverse of Lemma 2.3, showing that, if Conjecture 1.1 holds for a sequence and we remove a term, then Conjecture 1.1 also holds for the resulting subsequence.

Lemma 2.4. Let $n \geq 3$, let $k \in[1, n-2]$, let $G=C_{n} \oplus C_{n}$, and let $S \in \mathcal{F}(G)$ be a sequence with $|S|=2 n-2+k$ and $0 \notin \Sigma_{\leq 2 n-1-k}(S)$. Suppose there is some $g \in G$ such that $0 \notin$ $\Sigma_{\leq 2 n-2-k}(S \cdot g)$ with Conjecture 1.1 holding for $S \cdot g$. Then there exists a basis $\left(e_{1}, e_{2}\right)$ for G such that $S \cdot g=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(e_{1}+e_{2}\right)^{[k+1]}$ with $g=e_{1}+e_{2}$. In particular, Conjecture 1.1 holds for S.

Proof. Let $\left(e_{1}, e_{2}\right)$ be an arbitrary basis for which Conjecture 1.1 holds for $S \cdot g$. Then

$$
S \cdot g=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(x e_{1}+e_{2}\right)^{[k+1]}
$$

for some $x \in[1, n-1]$ with $\operatorname{gcd}(x, n)=1$ and either $x=1$ or $k=n-2$.
Suppose $x=1$. In such case, if $g=e_{1}+e_{2}$, the proof is complete, so either $g=e_{2}$ or $g=e_{1}$. But now $\left(e_{1}+e_{2}\right)^{[k+1]} \cdot e_{1}^{[n-k-1]} \cdot e_{2}^{[n-k-1]}$ is a zero-sum subsequence of S (in view of the hypothesis $k \geq 1$) with length $2 n-1-k$, contradicting that $0 \notin \Sigma_{\leq 2 n-1-k}(S)$. So we can now assume $x \geq 2$ with $k=n-2$, in which case

$$
S \cdot g=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(x e_{1}+e_{2}\right)^{[n-1]}
$$

If $x=n-1$, then using the basis $\left(e_{1},-e_{1}+e_{2}\right)$ in place of $\left(e_{1}, e_{2}\right)$, we find ourselves in the already completed case when $x=1$. Thus we can assume $x \in[2, n-2]$ with $\operatorname{gcd}(x, n)=1$, implying $n \geq 5$. Thus $k=n-2 \geq 3$ with $\operatorname{Supp}(S) \subseteq\left\{e_{1}\right\} \cup\left(\left\langle e_{1}\right\rangle+e_{2}\right),|S|=2 n-2+k$ and $0 \notin \Sigma_{\leq 2 n-1-k}(S)$, allowing us to apply Lemma 2.2 to S to conclude that there is a basis $\left(f_{1}, f_{2}\right)$ for G such that $S=f_{1}^{[n-1]} \cdot f_{2}^{[n-1]} \cdot\left(f_{1}+f_{2}\right)^{[k]}$. Since every term of $S \cdot g$ has multiplicity $n-1$, it follows that $g=f_{1}+f_{2}$, and the desired conclusion follows.

3. The Main Proof

We divide the proof of Theorem 1.2 into two main cases depending on the value of $k_{n} \in$ $[0, n-1]$. We begin first with the case when $k_{n} \in[0,1]$.

Proposition 3.1. Let $m, n \geq 2$ and let $k \in[0, m n-1]$ with $k=k_{m} n+k_{n}$, where $k_{m} \in[0, m-1]$ and $k_{n} \in[0,1]$. Suppose either Conjecture 1.1$]$ holds for k_{m} in $C_{m} \oplus C_{m}$, or else $k_{n}=1$, $k_{m} \in[1, m-2]$ and Conjecture 1.1 holds for $k_{m}+1$ in $C_{m} \oplus C_{m}$. Then Conjecture 1.1 holds for k in $C_{m n} \oplus C_{m n}$.

Proof. As remarked in the introduction, Conjecture 1.1 holds for $k \leq 1$ or $k=m n-1$ in every group $C_{m n} \oplus C_{m n}$. Therefore we can assume $k_{m} \in[1, m-1]$ and $k=k_{m} n+k_{n} \in[2, m n-2]$. Let $G=C_{m n} \oplus C_{m n}$ and let $S \in \mathcal{F}(G)$ be a sequence with

$$
\begin{equation*}
|S|=2 n m-2+k \quad \text { and } \quad 0 \notin \Sigma_{\leq 2 n m-1-k}(S) \tag{6}
\end{equation*}
$$

We need to show Conjecture 1.1.3 holds for S. Let $\varphi: G \rightarrow G$ be the multiplication by m homomorphism, so $\varphi(x)=m x$. Note

$$
\varphi(G)=m G \cong C_{n} \oplus C_{n} \quad \text { and } \quad \operatorname{ker} \varphi=n G \cong C_{m} \oplus C_{m}
$$

If $k_{n}=1$, set $S^{*}=S$. If $k_{n}=0$, we can choose any element $g_{0} \in-\sigma(S)+\operatorname{ker} \varphi$ and set $S^{*}=S \cdot g_{0}$. When $k_{n}=0$, the definition of g_{0} ensures that $\varphi\left(S^{*}\right)$ is zero-sum. When $k_{n}=1$, we will shortly see below in Claim A that $\varphi\left(S^{*}\right)$ is also zero-sum. Note, in all cases,

$$
\left|S^{*}\right|=2 m n-1+k_{m} n
$$

Define a block decomposition of S^{*} to be a factorization

$$
S^{*}=W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}
$$

with $1 \leq\left|W_{i}\right| \leq n$ and $\varphi\left(W_{i}\right)$ zero-sum for each $i \in\left[1,2 m-2+k_{m}\right]$. Since $\mathbf{s}_{\leq n}(\varphi(G))=$ $\mathbf{s}_{\leq n}\left(C_{n} \oplus C_{n}\right)=3 n-2$ and $|S| \geq\left(2 m-3+k_{m}\right) n+3 n-2$, it follows by repeated application of the definition of $s_{\leq n}(\varphi(G))$ that S^{*} has a block decomposition, and one with $g_{0} \in \operatorname{Supp}\left(W_{0}\right)$ when $k_{n}=0$.

Claim A. If $S^{*}=W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a block decomposition, then $\left|W_{i}\right|=n$ for all $i \in\left[1,2 m-2+k_{m}\right], \quad \varphi\left(W_{0}\right)$ is a minimal zero-sum sequence of length $\left|W_{0}\right|=2 n-1$, and $0 \notin \Sigma_{\leq n-1}\left(\varphi\left(S^{*}\right)\right)$.

Proof. Suppose $k_{n}=1$, so $S^{*}=S$. Let us show that $0 \notin \Sigma_{\leq 2 n-2}\left(\varphi\left(W_{0}\right)\right)$. Assuming this fails, there is a nontrivial subsequence $W_{0}^{\prime} \mid W_{0}$ with $\left|W_{0}^{\prime}\right| \leq 2 n-2$ and $\varphi\left(W_{0}^{\prime}\right)$ zero-sum. Set $W_{i}^{\prime}=W_{i}$ for $i \in\left[1,2 m-2+k_{m}\right]$. Then $S_{\sigma}=\sigma\left(W_{0}^{\prime}\right) \cdot \sigma\left(W_{1}^{\prime}\right) \cdot \ldots \cdot \sigma\left(W_{2 m-2+k_{m}}^{\prime}\right)$ is a sequence of terms from ker $\varphi \cong C_{m} \oplus C_{m}$ with $\left|S_{\sigma}\right|=2 m-1+k_{m}$. Since $\mathbf{s}_{\leq 2 m-1-k_{m}}\left(C_{m} \oplus C_{m}\right)=2 m-1+k_{m}$, it follows that S_{σ} has a nontrivial zero-sum subsequence of length at most $2 m-1-k_{m}$, say $\prod_{i \in I}^{\bullet} \sigma\left(W_{i}^{\prime}\right)$ for some nonempty subset $I \subseteq\left[0,2 m-2+k_{m}\right]$ with $|I| \leq 2 m-1-k_{m}$. But now $\prod_{i \in I}^{\bullet} W_{i}^{\prime}$ is a nontrivial zero-sum subsequence of $S^{*}=S$ with length

$$
\sum_{i \in I}\left|W_{i}^{\prime}\right| \leq \max \left\{\left|W_{0}^{\prime}\right|, n\right\}+(|I|-1) n \leq 2 n-2+\left(2 m-2-k_{m}\right) n=2 m n-1-k,
$$

contradicting (6). This show that $0 \notin \Sigma_{2 n-2}\left(\varphi\left(W_{0}\right)\right)$. As a result,

$$
\left|W_{0}\right| \leq \mathbf{s}_{\leq 2 n-2}(\varphi(G))-1=\mathbf{s}_{\leq 2 n-2}\left(C_{n} \oplus C_{n}\right)-1=2 n-1 .
$$

Suppose $k_{n}=0$. Then $S^{*}=S \cdot g_{0}$ with $\varphi\left(S \cdot g_{0}\right)$ zero-sum by definition of g_{0}. Hence $\varphi\left(W_{0}\right)$ is also a zero-sum sequence. Let us show that $\varphi\left(W_{0}\right)$ is a minimal zero-sum sequence. Assuming this fails, then W_{0} contains disjoint, nontrivial subsequences $W_{2 m-1+k_{m}} \cdot W_{2 m+k_{m}} \mid W_{0}$ with $\left|W_{2 m-1+k_{m}}\right|+\left|W_{2 m+k_{m}}\right| \leq n+2 n-1$ and $\varphi\left(W_{2 m-1+k_{m}}\right)$ and $\varphi\left(W_{2 m+k_{m}}\right)$ both zero-sum (if $\left|W_{0}\right| \leq 3 n-1$, this is trivial in view of $\varphi\left(W_{0}\right)$ not being a minimal zero-sum, while the same conclusion follows from $\mathrm{D}(\varphi(G))=2 n-1$ and $\mathbf{s}_{\leq n}(\varphi(G))=3 n-2$ when $\left.\left|W_{0}\right| \geq 3 n-1\right)$. By passing to appropriate zero-sum subsequences, we can then further assume $\varphi\left(W_{2 m-1+k_{m}}\right)$ and $\varphi\left(W_{2 m+k_{m}}\right)$ are each minimal zero-sum subsequences, so that $\left|W_{i}\right| \leq \mathrm{D}(\varphi(G))=2 n-1$ for both $i \in\left\{2 m-1+k_{m}, 2 m-k_{m}\right\}$. As at most one of the sequences W_{j} can contain the term g_{0}, it follows that $\prod_{i \in\left[1,2 m+k_{m}\right] \backslash\{j\}}^{\bullet} W_{j} \mid S$ for some $j \in\left[1,2 m+k_{m}\right]$. Now $\sigma\left(W_{1}\right) \cdot \ldots \cdot \sigma\left(W_{2 m+k_{m}}\right) \cdot \sigma\left(W_{j}\right)^{[-1]}$ is a sequence of terms from $\operatorname{ker} \varphi \cong C_{m} \oplus C_{m}$ with length $\mathbf{s}_{\leq 2 m-1-k_{m}}\left(C_{m} \oplus C_{m}\right)=2 m-1+k_{m}$. It follows that there is a zero-sum subsequence $\prod_{i \in I}^{\bullet} \sigma\left(W_{i}\right)$ for some $I \subseteq\left[1,2 m+k_{m}\right] \backslash\{j\}$ with $1 \leq|I| \leq 2 m-1-k_{m}$. In such case, if $|I| \geq 2$, then $T=\prod_{i \in I}^{\bullet} W_{i}$ is a zero-sum subsequence of S with length

$$
\begin{aligned}
|T| & \leq(|I|-2) n+\max \left\{2 n, n+\left|W_{2 m-1+k_{m}}\right|, n+\left|W_{2 m+k_{m}}\right|,\left|W_{2 m-1+k_{m}}\right|+\left|W_{2 m+k_{m}}\right|\right\} \\
& \leq(|I|-2) n+3 n-1 \leq\left(2 m-3-k_{m}\right) n+3 n-1=2 m n-1+k,
\end{aligned}
$$

contrary to (6). On the other hand, if $|I|=1$, then $T=\prod_{i \in I}^{\bullet} W_{i}$ is a zero-sum subsequence of S with length $|T| \leq \max \left\{n,\left|W_{2 m-1+k_{m}}\right|,\left|W_{2 m+k_{m}}\right|\right\} \leq 2 n-1 \leq 2 m n-1-k$, also contradicting (6). This shows that $\varphi\left(W_{0}\right)$ must be a minimal zero-sum sequence. In particular,

$$
\left|W_{0}\right| \leq \mathrm{D}\left(C_{n} \oplus C_{n}\right)=2 n-1 .
$$

Regardless of whether $k_{n}=0$ or 1 , we have shown that $\left|W_{0}\right| \leq 2 n-1$. As a result, since $\left|W_{i}\right| \leq n$ for all $i \in\left[1,2 m-2+k_{m}\right]$, we have

$$
2 n-1=2 m n-1+k_{m} n-\left(2 m-2+k_{m}\right) n \leq\left|S^{*}\right|-\sum_{i=1}^{2 m-2+k_{m}}\left|W_{i}\right|=\left|W_{0}\right| \leq 2 n-1,
$$

forcing equality to hold in these estimates, i.e., $\left|W_{i}\right|=n$ for all $i \in\left[1,2 m-2+k_{m}\right]$ and $\left|W_{0}\right|=$ $2 n-1$. If $k_{n}=0$, we have already shown that $\varphi\left(W_{0}\right)$ is a minimal zero-sum sequence. For $k_{n}=1$, we established that $0 \notin \Sigma_{2 n-2}\left(\varphi\left(W_{0}\right)\right)$, which combined with $\mathrm{D}(\varphi(G))=\mathrm{D}\left(C_{n} \oplus C_{n}\right)=2 n-1$ forces $\varphi\left(W_{0}\right)$ to be a minimal zero-sum sequence in this case as well. If $0 \in \Sigma_{\leq n-1}\left(\varphi\left(S^{*}\right)\right)$, then there is a nontrivial subsequence $W_{1}^{\prime} \mid S^{*}$ with $1 \leq\left|W_{1}^{\prime}\right| \leq n-1$ and $\varphi\left(W_{1}^{\prime}\right)$ zero-sum. Then, by the argument showing that S^{*} has some block decomposition, we can find a block decomposition $S^{*}=W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \cdot W_{2 m-2+k_{m}}^{\prime}$ with $\left|W_{1}^{\prime}\right|<n$, contrary to what was just established for an arbitrary block decomposition. Thus $0 \notin \Sigma_{\leq n-1}\left(\varphi\left(S^{*}\right)\right)$, and all parts of Claim A are established.

Suppose

$$
\begin{equation*}
S^{*}=W_{0} \cdot \ldots \cdot W_{2 m-2+k_{m}} \tag{7}
\end{equation*}
$$

with each $\varphi\left(W_{i}\right)$ a nontrivial zero-sum for $i \in\left[0,2 m-2+k_{m}\right]$. We call this a weak block decomposition of S^{*}. In view of Claim A, we have $\left|W_{i}\right| \geq n$ for all $\in\left[0,2 m-2+k_{m}\right]$, and since $\left|S^{*}\right|=2 m n-1-k_{m} n>\left(2 m-1-k_{m}\right) n$, we cannot have $\left|W_{i}\right|=n$ for all $i \in\left[0,2 m-2+k_{m}\right]$.

$$
\text { Let } k_{\emptyset} \in\left[0,2 m-2+k_{m}\right] \text { be an index with } \begin{cases}\left|W_{k_{\emptyset}}\right|>n & \text { if } k_{n}=1 \\ g_{0} \in \operatorname{Supp}\left(W_{0}\right) & \text { if } k_{n}=0\end{cases}
$$

Then define

$$
S_{\sigma}=\sigma\left(W_{0}\right) \cdot \ldots \cdot \sigma\left(W_{2 m-2+k_{m}}\right) \cdot \sigma\left(W_{k_{\emptyset}}\right)^{[-1]} \in \mathcal{F}(\operatorname{ker} \varphi)
$$

We call k_{\emptyset} and S_{σ} the associated index and sequence for the block decomposition. For $j \in$ $\left[0,2 m-2+k_{m}\right]$, set

$$
\widetilde{W}_{j}= \begin{cases}W_{j} \cdot g_{0}^{[-1]} & \text { if } k_{n}=0 \text { and } j=k_{\emptyset} ; \\ W_{j} & \text { otherwise } .\end{cases}
$$

In view of Claim A, any block decomposition is also a weak block decomposition. If $S^{*}=$ $W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a block decomposition and $k_{n}=1$, then $k_{\emptyset}=0$ is forced as $\left|W_{i}\right|=n$ for all $i \geq 1$. On the other hand, if $k_{n}=0$, then there is a block decomposition with $g_{0} \in \operatorname{Supp}\left(W_{0}\right)$ as remarked earlier, and thus with $k_{\emptyset}=0$.

Claim B. Suppose $S^{*}=W_{0} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a weak block decomposition with associated index k_{\emptyset} and associated sequence S_{σ}. Then $\left|S_{\sigma}\right|=2 m-2+k_{m}$ with $0 \notin \Sigma_{\leq 2 m-1-k_{m}}\left(S_{\sigma}\right)$. Moreover, if we also have $k_{n}=1$, then $\left|\sigma\left(W_{k_{\emptyset}}\right) \cdot S_{\sigma}\right|=2 m-1+k_{m}$ with $0 \notin \Sigma_{\leq 2 m-2-k_{m}}\left(\sigma\left(W_{k_{\emptyset}}\right) \cdot S_{\sigma}\right)$. Regardless of whether $k_{n}=0$ or 1, Conjecture 1.1 holds for S_{σ}.

Proof. We have $\left|S_{\sigma}\right|=2 m-2+k_{m}$ by definition. Assume by contradiction $0 \in \Sigma_{\leq 2 m-1-k_{m}}\left(S_{\sigma}\right)$. Then there is a zero-sum subsequence $\prod_{i \in I}^{\bullet} \sigma\left(W_{i}\right)$ for some $I \subseteq\left[0,2 m-2+k_{m}\right] \backslash\left\{k_{\emptyset}\right\}$ with $1 \leq|I| \leq 2 m-1-k_{m}$. By Claim A, we have $0 \notin \Sigma_{\leq n-1}\left(\varphi\left(S^{*}\right)\right)$, which ensures $\left|W_{i}\right| \geq n$ for all $i \in$ $\left[0,2 m-2+k_{m}\right] \backslash I$. Since $k_{\emptyset} \notin I$, we have $\left|W_{k_{\emptyset}}\right| \geq n+k_{n}$ with $k_{\emptyset} \in\left[0,2 m-2+k_{m}\right] \backslash I$ (by definition of k_{\emptyset}). It follows that $T:=\prod_{i \in I}^{\bullet} W_{i}$ is a nontrivial zero-sum subsequence of S with length $|T|=\left|S^{*}\right|-\sum_{i \in\left[0,2 m-2+k_{m}\right] \backslash I}\left|W_{i}\right| \leq\left|S^{*}\right|-\left(2 m-1+k_{m}-|I|\right) n-k_{n} \leq\left|S^{*}\right|-2 k_{m} n-k_{n}=2 m n-1-k$, contradicting (6). So we instead conclude that $\left|S_{\sigma}\right|=2 m-2+k_{m}$ and $0 \notin \Sigma_{\leq 2 m-1-k_{m}}\left(S_{\sigma}\right)$.

Suppose $k_{n}=1$, so that $S^{*}=S$. Assume by contradiction that $0 \in \Sigma_{\leq 2 m-2-k_{m}}\left(\sigma\left(W_{k_{\emptyset}}\right) \cdot S_{\sigma}\right)$. Then there is a zero-sum subsequence $\prod_{i \in I}^{\bullet} \sigma\left(W_{i}\right)$ for some $I \subseteq\left[0,2 m-2+k_{m}\right]$ with $1 \leq$ $|I| \leq 2 m-2-k_{m}$. By Claim A, we have $0 \notin \Sigma_{\leq n-1}\left(\varphi\left(S^{*}\right)\right)$, which ensures $\left|W_{i}\right| \geq n$ for all $i \in\left[0,2 m-2+k_{m}\right] \backslash I$. Hence $T:=\prod_{i \in I}^{\bullet} W_{i}$ is a nontrivial zero-sum subsequence of S with length

$$
\begin{aligned}
|T| & =\left|S^{*}\right|-\sum_{i \in\left[0,2 m-2+k_{m}\right] \backslash I}\left|W_{i}\right| \leq\left|S^{*}\right|-\left(2 m-1+k_{m}-|I|\right) n \leq\left|S^{*}\right|-\left(2 k_{m}+1\right) n \\
& =2 m n-1-k_{m} n-n \leq 2 m n-1-k,
\end{aligned}
$$

contradicting (6). So we instead conclude that we have $\left|\sigma\left(W_{k_{\emptyset}}\right) \cdot S_{\sigma}\right|=2 m-1+k_{m}$ and $0 \notin \Sigma_{\leq 2 m-2-k_{m}}\left(\sigma\left(W_{k_{\emptyset}}\right) \cdot S_{\sigma}\right)$.

If Conjecture 1.1 holds for k_{m} in $C_{m} \oplus C_{m}$, then the first part of Claim B ensures that Conjecture 1.1 holds for S_{σ}. Otherwise, the hypotheses of Proposition 3.1 ensure that $k_{n}=1$ and $k_{m} \in[1, m-2]$ with Conjecture 1.1 holding for $k_{m}+1$ in $C_{m} \oplus C_{m}$. In such case, the second part of Claim B ensures that Conjecture 1.1 holds for $\sigma\left(W_{k_{\emptyset}}\right) \cdot S_{\sigma}$, and then applying Lemma 2.4 shows that Conjecture 1.1 holds for S_{σ}.

Claim C. There exists a basis $\left(f_{1}, f_{2}\right)$ for $\varphi(G)=C_{n} \oplus C_{n}$ such that either

1. $\operatorname{Supp}\left(\varphi\left(S^{*}\right)\right) \subseteq f_{1} \cup\left(\left\langle f_{1}\right\rangle+f_{2}\right)$, or
2. $\varphi\left(S^{*}\right)=f_{1}^{[a n]} \cdot f_{2}^{[b n-1]} \cdot f_{3}^{[c n-1]} \cdot\left(f_{2}+f_{3}\right)$, where $f_{3}=x f_{1}+f_{2}$ for some $x \in[2, n-2]$ with $\operatorname{gcd}(x, n)=1, a, b, c \geq 1$ and $a+b+c=2 m+k_{m}$.

Proof. By Claim A, we have $0 \notin \Sigma_{\leq n-1}\left(\varphi\left(S^{*}\right)\right)$, while $\left|\varphi\left(S^{*}\right)\right|=\left|S^{*}\right|=\left(2 m+k_{m}\right) n-1$. Thus Claim C follows from Theorem B

We define a term $g \in \operatorname{Supp}(S)$ to be good if $g, h \in \operatorname{Supp}(S)$ with $\varphi(g)=\varphi(h)$ implies $g=h$. A term $g \in \operatorname{Supp}(\varphi(S))$ is good if $\operatorname{Supp}(S)$ contains exactly one element from $\varphi^{-1}(g)$. Then, for $g \in \operatorname{Supp}(S)$, we find that $\varphi(g)=m g$ is good if and only if g is good.

Claim D. Suppose $S^{*}=W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a weak block decomposition. If $g \in$ $\operatorname{Supp}\left(W_{j}\right), \quad h \in \operatorname{Supp}\left(\widetilde{W}_{k_{\emptyset}}\right)$ and $\varphi(g)=\varphi(h)$, where $j, k_{\emptyset} \in\left[0,2 m-2+k_{m}\right]$ are distinct, then $g=h$ is good.

Proof. Since $\varphi(g)=\varphi(h)$, setting $W_{j}^{\prime}=W_{j} \cdot g^{[-1]} \cdot h, W_{k_{\emptyset}}^{\prime}=W_{k_{\emptyset}} \cdot h^{[-1]} \cdot g$, and $W_{i}^{\prime}=W_{i}$ for all $i \neq j, k$, we obtain a new weak block decomposition $S^{*}=W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \cdot W_{2 m-2+k_{m}}^{\prime}$. Since $h \in \operatorname{Supp}\left(\widetilde{W}_{k_{\emptyset}}\right)$, we have $g_{0} \in \operatorname{Supp}\left(W_{k_{\emptyset}}^{\prime}\right)$ for $k_{n}=0$, and $\left|W_{k_{\emptyset}}^{\prime}\right|=\left|W_{k_{\emptyset}}\right|>n$ for $k_{n}=1$. Consequently, if we let S_{σ} and S_{σ}^{\prime} be the associated sequences for the original and new block decompositions, with k_{\emptyset} and k_{\emptyset}^{\prime} the associated indices, we find that $k_{\emptyset}=k_{\emptyset}^{\prime}$ with S_{σ}^{\prime} obtained from S_{σ} by replacing the term $\sigma\left(W_{j}\right)$ by the term $\sigma\left(W_{j}^{\prime}\right)=\sigma\left(W_{j}\right)-g+h$. In view of Claim B, it follows that Conjecture 1.1 holds for both sequences S_{σ}^{\prime} and S_{σ} using $k_{m} \in[1, m-1]$ modulo m. Thus Lemma 2.1 implies that $g=h$. Repeating this argument for an arbitrary $g^{\prime} \in \operatorname{Supp}\left(S \cdot W_{k_{\emptyset}}^{[-1]}\right)$ using the fixed $h \in \operatorname{Supp}\left(\widetilde{W}_{k_{\emptyset}}\right)$, we conclude that $g^{\prime}=h=g$ for all $g^{\prime} \in \operatorname{Supp}\left(S \cdot W_{k_{\emptyset}}^{[-1]}\right)$ with $\varphi\left(g^{\prime}\right)=\varphi(g)=\varphi(h)$. Likewise, repeating the argument for an arbitrary $h^{\prime} \in \operatorname{Supp}\left(\widetilde{W}_{k_{\emptyset}}\right)$ using the fixed $g \in \operatorname{Supp}\left(W_{j}\right)$, we find $h^{\prime}=g=h$ for all $h^{\prime} \in \operatorname{Supp}\left(\widetilde{W}_{k_{\emptyset}}\right)$ with $\varphi\left(h^{\prime}\right)=\varphi(g)=\varphi(h)$. It follows that $g=h$ is good.

Claim E. Claim C. 1 holds for S^{*}.
Proof. Assume instead that Claim C. 2 holds. Let $\left(f_{1}, f_{2}\right)$ be a basis for which Claim C. 2 holds and let $x^{*} \in[2, n-2]$ be the multiplicative inverse of $-x$ modulo n, so

$$
x^{*} x \equiv-1 \quad \bmod n .
$$

In view of Claim C.2, there is a block decomposition $S^{*}=W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ with $\varphi\left(W_{0}\right)=f_{1}^{[n-1]} \cdot f_{2}^{\left[x^{*}\right]} \cdot f_{3}^{\left[n-x^{*}\right]}, \varphi\left(W_{1}\right)=f_{3}^{\left[x^{*}-1\right]} \cdot f_{2}^{\left[n-x^{*}-1\right]} \cdot f_{1} \cdot\left(f_{2}+f_{3}\right)$ and $\varphi\left(W_{i}\right) \in\left\{f_{1}^{[n]}, f_{2}^{[n]}, f_{3}^{[n]}\right\}$ for all $i \in\left[2,2 m-2+k_{m}\right]$. We call any such block decomposition a strong block decomposition of S^{*}. For $k_{n}=0$, it can also be assumed that either $g_{0} \in \operatorname{Supp}\left(W_{0}\right)$ or else $g_{0} \in \operatorname{Supp}\left(W_{1}\right)$ and $\varphi\left(g_{0}\right)=f_{2}+f_{3}$, since $\operatorname{Supp}\left(\varphi\left(W_{0}\right)\right)$ contains every element $\operatorname{from} \operatorname{Supp}\left(\varphi\left(S^{*}\right)\right)$ apart from the unique term equal to $f_{2}+f_{3}$ which is contained in $\varphi\left(W_{1}\right)$.

Let us first show all $g \in \operatorname{Supp}(S)$ are good. Since Claim C. 2 holds, we have $n \geq 5$ (as $x \in[2, n-2]$ with $\operatorname{gcd}(x, n)=1)$ and there is a unique term g of S^{*} with $\varphi(g)=f_{2}+f_{3}$, which is trivially good if $g \in \operatorname{Supp}(S)$. Consider $f \in\left\{f_{1}, f_{2}, f_{1}+f_{2}\right\}$ and let $S^{*}=W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ be a strong block decomposition, and if $k_{n}=0$, assume either $g_{0} \in \operatorname{Supp}\left(W_{0}\right)$ or else $g_{0} \in$ $\operatorname{Supp}\left(W_{1}\right)$ and $\varphi\left(g_{0}\right)=f_{2}+f_{3}$. Since $\mathrm{v}_{f}\left(\varphi\left(W_{0}\right)\right) \geq 2$, there is some $h \in \operatorname{Supp}\left(\widetilde{W}_{0}\right)$ with $\varphi(h)=f$. Since $\mathrm{v}_{f}\left(\varphi\left(W_{1}\right)\right) \geq 1$ with either $g_{0} \in \operatorname{Supp}\left(W_{0}\right)$ or $\varphi\left(g_{0}\right)=f_{2}+f_{3}$, there is some $g \in \operatorname{Supp}\left(\widetilde{W}_{1}\right)$ with $\varphi(g)=f$. If $k_{n}=1$, then $k_{\emptyset}=0$, and if $k_{n}=0$, then $k_{\emptyset} \in\{0,1\}$ (as $\left.g_{0} \in \operatorname{Supp}\left(W_{0} \cdot W_{1}\right)\right)$. Thus applying Claim D shows that $\varphi(g)=f$ is good, as claimed.

Now, since all $g \in \operatorname{Supp}(S)$ are good, an appropriate choice of pre-images for the elements f_{1} and f_{2} yields $\operatorname{Supp}(S) \subseteq\left\{e_{1}, e_{2}, e_{3}+\alpha, e_{2}+e_{3}+\beta\right\}$ for some $\alpha, \beta \in \operatorname{ker} \varphi$, where $e_{3}:=x e_{1}+e_{2}$, $\varphi\left(e_{1}\right)=f_{1}$ and $\varphi\left(e_{2}\right)=f_{2}$. As before, let $S^{*}=W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ be a strong block
decomposition, and if $k_{n}=0$, assume either $g_{0} \in \operatorname{Supp}\left(W_{0}\right)$ or else $g_{0} \in \operatorname{Supp}\left(W_{1}\right)$ and $\varphi\left(g_{0}\right)=$ $f_{2}+f_{3}$. By choosing $g_{0} \in g_{0}+\operatorname{ker} \varphi$ appropriately, we can assume $g_{0} \in\left\{e_{1}, e_{2}, e_{3}+\alpha, e_{2}+e_{3}+\beta\right\}$ for $k_{n}=0$ as well. Since $x, x^{*} \in[2, n-2]$, we have $\mathrm{v}_{e_{1}}\left(W_{0}\right)=n-1>x$ and $\mathrm{v}_{e_{2}}\left(W_{0}\right)=x^{*}>1$, whence $e_{1}^{[x]} \cdot e_{2} \mid \widetilde{W}_{0}$ and $e_{3}+\alpha \mid \widetilde{W}_{1}$. Thus, setting $W_{0}^{\prime}=W_{0} \cdot\left(e_{1}^{[x]} \cdot e_{2}\right)^{[-1]} \cdot\left(e_{3}+\alpha\right)$, $W_{1}^{\prime}=W_{1} \cdot\left(e_{3}+\alpha\right)^{[-1]} \cdot e_{1}^{[x]} \cdot e_{2}$ and $W_{i}^{\prime}=W_{i}$ for $i \geq 2$, we obtain a weak block decomposition $S^{*}=W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \cdot W_{2 m-2+k_{m}}^{\prime}$ say with associated index k_{\emptyset}^{\prime} and associated sequence S_{σ}^{\prime}. Since $e_{1}^{[x]} \cdot e_{2} \mid \widetilde{W}_{0}$ and $e_{3}+\alpha \mid \widetilde{W}_{1}$, we have $k_{\emptyset}^{\prime}=k_{\emptyset} \in\{0,1\}$ when $k_{n}=0$, while $\left|W_{0}^{\prime}\right|=2 n-1-x \geq$ $n+1$ ensures that $k_{\emptyset}^{\prime}=k_{\emptyset}=0$ for $k_{n}=1$. As a result, Claim B and Lemma 2.1 imply $S_{\sigma}=S_{\sigma}^{\prime}$ with $\alpha=0$. Similarly, since $x, x^{*} \in[2, n-2]$, we have $\mathrm{v}_{e_{1}}\left(W_{0}\right)=n-1>n-x$ and $\mathrm{v}_{e_{3}}\left(W_{0}\right)=n-x^{*}>1$, whence $e_{1}^{[n-x]} \cdot e_{3} \mid \widetilde{W}_{0}$ and $e_{2} \mid \widetilde{W}$. Setting $W_{0}^{\prime}=W_{0} \cdot\left(e_{1}^{[n-x]} \cdot e_{3}\right)^{[-1]} \cdot e_{2}$, $W_{1}^{\prime}=W_{1} \cdot e_{2}^{[-1]} \cdot e_{1}^{[n-x]} \cdot e_{3}$ and $W_{i}^{\prime}=W_{i}$ for $i \geq 2$, we obtain a weak block decomposition $S^{*}=W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \cdot W_{2 m-2+k_{m}}^{\prime}$ with $\left|W_{0}^{\prime}\right|=2 n-1-(n-x) \geq n+1$ having associated index $k_{\emptyset}^{\prime}=k_{\emptyset}$ and associated sequence S_{σ}^{\prime}. Thus Claim B and Lemma 2.1 yield $S_{\sigma}=S_{\sigma}^{\prime}$ and $n e_{1}=(n-x) e_{1}+e_{3}-e_{2}=0$. We thus obtain a zero-sum subsequence $e_{1}^{[n]} \mid S$, contradicting that $0 \notin \Sigma_{\leq n}(S)$ (which holds by (6)), unless $a=1, k_{n}=0$ and $\varphi\left(g_{0}\right)=f_{1}$. However, in such case, there are $\left|S^{*}\right|-n-1=\left(2 m+k_{m}-1\right) n-2 \geq 2 m n-2$ terms of S equal to either e_{2} or e_{3}, so that the pigeonhole principle yields that either e_{2} or e_{3} has multiplicity at least $m n-1$ in S. If either has multiplicity at least $m n$, then $e_{2}^{[m n]}$ or $e_{3}^{[m n]}$ is a zero-sum subsequence of length $m n$, contradicting that $0 \notin \Sigma_{\leq m n}(S)$ by (6). On the other hand, if both e_{2} and $e_{3}=x e_{1}+e_{2}$ have multiplicity $m n-1 \geq n$ (as $m \geq 2$), then $e_{2}^{[m n-n]} \cdot e_{3}^{[n]}$ is a zero-sum subsequence of length $m n$ (as $n e_{1}=0$), again contradicting that $0 \notin \Sigma_{\leq m n}(S)$.

In view of Claim E, we now assume Claim C. 1 holds for the remainder of the proof, say with basis $\left(f_{1}, f_{2}\right)$. Then $\operatorname{Supp}\left(\varphi\left(S^{*}\right)\right) \subseteq f_{1} \cup\left(\left\langle f_{1}\right\rangle+f_{2}\right)$, implying that the number of terms from $\left\langle f_{1}\right\rangle+f_{2}$ in any zero-sum subsequence of $\varphi(S)$ must be congruent to 0 modulo n. As a result, if $S^{*}=W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is any block decomposition, then since $\left|W_{i}\right|=n$ for $i \geq 1$ and $\left|W_{i}\right|=2 n-1$, we find that
(8) $\varphi\left(W_{0}\right)=f_{1}^{[n-1]} \cdot \prod_{i \in[1, n]}^{\bullet}\left(x_{i} f_{1}+f_{2}\right)$ and $\varphi\left(W_{i}\right) \in\left\{f_{1}^{[n]}, \prod_{i \in[1, n]}^{\bullet}\left(c_{i} f_{1}+f_{2}\right)\right\}$ for $i \geq 1$,
where $x_{1}, \ldots, x_{n}, c_{1}, \ldots, c_{n} \in[0, n-1]$ with $c_{1}+\ldots+c_{n} \equiv 0 \bmod n$ and $x_{1}+\ldots+x_{n} \equiv 1$ $\bmod n$. Note, if $\left(f_{1}, f_{2}\right)$ is a basis for which Claim C. 1 holds, then so is $\left(f_{1}, x f_{1}+f_{2}\right)$ for any $x \in \mathbb{Z}$.

Claim F. If $n=2$, then all terms $x \in \operatorname{Supp}(S)$ are good.
Proof. Let $S^{*}=W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ be a block decomposition. Then $\varphi\left(W_{0}\right)$ is a minimal zero-sum sequence of length $2 n-1=3$ by Claim A, so $\varphi\left(W_{0}\right)=f_{1} \cdot f_{2} \cdot\left(f_{1}+f_{2}\right)$ with f_{1}, f_{2} and $f_{1}+f_{2}$ the three nonzero elements of $\varphi(G) \cong C_{n} \oplus C_{n}=C_{2} \oplus C_{2}$. By Claim C.1, we have $\operatorname{Supp}(\varphi(S)) \subseteq\left\{f_{1}, f_{2}, f_{1}+f_{2}\right\}=\varphi(G) \backslash\{0\}$, and $\left|\operatorname{Supp}\left(\varphi\left(W_{i}\right)\right)\right|=1$ for $i \in\left[1,2 m-2+k_{m}\right]$, allowing us to assume $g_{0} \in \operatorname{Supp}\left(W_{0}\right)$ when $k_{n}=0$, and by choosing f_{1} and f_{2} appropriately,
we can w.l.o.g. assume $\varphi\left(g_{0}\right)=f_{1}+f_{2}$. If $\mathrm{v}_{f_{1}}(S)=1$, then the definition of good holds trivially for f_{1}. Otherwise, there is some W_{j} with $f_{1} \in \operatorname{Supp}\left(W_{j}\right)$ and $j \geq 1$, in which case Claim D, implies that f_{1} is good. Thus f_{1} is good, and the same argument shows that f_{2} is good. If $k_{n}=1$, the argument also shows $f_{1}+f_{2}$ is good. The proof of the claim is now complete unless $\mathrm{v}_{f_{1}+f_{2}}(\varphi(S)) \geq 2$ with $k_{n}=0$ and $S^{*}=S \cdot g_{0}$, which we now assume. Note $\varphi\left(g_{0}\right)=f_{1}+f_{2}$, so $W_{1}^{\prime}=\left(f_{1}+f_{2}\right) \cdot \varphi\left(g_{0}\right)$ is a length two zero-sum dividing $\varphi\left(S \cdot g_{0}\right)$. Applying the argument showing the existence of a block decomposition, it follows that there is a block decomposition $W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \cdot W_{2 m-2+k_{m}}^{\prime}$ of S^{*} with $\varphi\left(W_{1}^{\prime}\right)=\left(f_{1}+f_{2}\right) \cdot \varphi\left(g_{0}\right)$ and $k_{\emptyset}=1$. Since $\mathrm{v}_{f_{1}+f_{2}}(\varphi(S)) \geq 2$, it follows that there is some $j \in\left[0,2 m-2+k_{m}\right] \backslash\{1\}$ with $f_{1}+f_{2} \in \operatorname{Supp}\left(\varphi\left(W_{j}\right)\right)$, and now Claim D, applied to the block decomposition $W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \cdot W_{2 m-2+k_{m}}^{\prime}$, implies that $f_{1}+f_{2}$ is good, completing the claim.

Claim G. Suppose $S^{*}=W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a block decomposition with $k_{\emptyset}=0$. If $g_{1} \in \operatorname{Supp}\left(\widetilde{W}_{j_{1}}\right), g_{2} \in \operatorname{Supp}\left(\widetilde{W}_{j_{2}}\right)$ and $\varphi\left(g_{1}\right)=\varphi\left(g_{2}\right)$, where $j_{1}, j_{2} \in\left[0,2 m-2+k_{m}\right]$ are distinct, then $g_{1}=g_{2}$ is good.

Proof. In view of Claim F, we can assume $n \geq 3$. Since $\mathrm{v}_{f_{1}}\left(\varphi\left(W_{0}\right)\right)=n-1 \geq 2$ and $\left|W_{0}\right|-$ $\mathrm{v}_{f_{1}}\left(\varphi\left(W_{0}\right)\right)=n \geq 3$ by (8), we have and can w.l.o.g. assume (by possibly exchanging f_{2} for an appropriate alternative from $\left\langle f_{1}\right\rangle+f_{2}$) that

$$
\begin{equation*}
f_{1} \in \operatorname{Supp}\left(\varphi\left(\widetilde{W}_{0}\right)\right) \quad \text { and } \quad f_{2} \in \operatorname{Supp}\left(\varphi\left(\widetilde{W}_{0}\right)\right) \tag{9}
\end{equation*}
$$

If $j_{1}=0$ or $j_{2}=0$, then Claim D implies $g_{1}=g_{2}$ is good (as $k_{\emptyset}=0$). Therefore we can w.l.o.g. assume $j_{1}=1$ and $j_{2}=2$. By Claim C.1, we have $\operatorname{Supp}(\varphi(S)) \subseteq\left\{f_{1}\right\} \cup\left(\left\langle f_{1}\right\rangle+f_{2}\right)$. If $\varphi\left(g_{1}\right)=f_{1} \in \operatorname{Supp}\left(\varphi\left(\widetilde{W}_{0}\right)\right)$, then Claim D applied with $k_{\emptyset}=0$ and $j=1$ implies that g_{1} is good. Therefore, in view of (8), we can assume

$$
\begin{equation*}
\operatorname{Supp}\left(\varphi\left(W_{1}\right)\right) \subseteq\left\langle f_{1}\right\rangle+f_{2} \quad \text { and } \quad \operatorname{Supp}\left(\varphi\left(W_{2}\right)\right) \subseteq\left\langle f_{1}\right\rangle+f_{2}, \tag{10}
\end{equation*}
$$

with the latter following by an analogous argument. In particular,

$$
\varphi\left(g_{1}\right)=\varphi\left(g_{2}\right)=x_{1} f_{1}+f_{2} \quad \text { for some } x_{1} \in[0, n-1] .
$$

Suppose $k_{n}=1$. Then $\left|W_{0} \cdot W_{1} \cdot g_{1}^{[-1]}\right|=3 n-2=\eta\left(C_{n} \oplus C_{n}\right)$, ensuring by Claim A that $W_{0} \cdot W_{1} \cdot g_{1}^{[-1]}$ contains an n-term subsequence W_{0}^{\prime} with $\varphi\left(W_{0}^{\prime}\right)$ zero-sum. Setting $W_{0}^{\prime}=$ $W_{0} \cdot W_{1} \cdot\left(W_{1}^{\prime}\right)^{[-1]}$, it follows that $S^{*}=W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot W_{2} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a block decomposition with $g_{1} \in \operatorname{Supp}\left(W_{0}^{\prime}\right), \quad g_{2} \in \operatorname{Supp}\left(W_{2}^{\prime}\right)$ and associated index $k_{\emptyset}^{\prime}=0$, in which case Claim D implies that $g_{1}=g_{2}$ is good, as desired.

Suppose $k_{n}=0$. Since $k_{\emptyset}=0$, we have $g_{0} \in \operatorname{Supp}\left(W_{0}\right)$ with $\left|W_{0} \cdot W_{1} \cdot g_{1}^{[-1]} \cdot g_{0}^{[-1]}\right|=$ $3 n-3$. If $W_{0} \cdot W_{1} \cdot g_{1}^{[-1]} \cdot g_{0}^{[-1]}$ contains an n-term subsequence W_{1}^{\prime} with $\varphi\left(W_{0}^{\prime}\right)$ zero-sum, then setting $W_{0}^{\prime}=W_{0} \cdot W_{1} \cdot\left(W_{1}^{\prime}\right)^{[-1]}$, it follows that $S^{*}=W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot W_{2} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a block decomposition with $g_{0} \cdot g_{1} \mid W_{0}^{\prime}, g_{2} \in \operatorname{Supp}\left(W_{2}\right)$ and associated index $k_{\emptyset}^{\prime}=0$, in which case Claim D implies that $g_{1}=g_{2}$ is good. Therefore, in view of Claim A, we can instead assume
$0 \notin \Sigma_{\leq n}\left(\varphi\left(W_{0} \cdot W_{1} \cdot g_{1}^{[-1]} \cdot g_{0}^{[-1]}\right)\right)$. We have $f_{1}, f_{2} \in \operatorname{Supp}\left(\varphi\left(W_{0} \cdot g_{0}^{[-1]}\right)\right) \subseteq \operatorname{Supp}\left(W_{0}^{\prime}\right)$ by (9), so applying the established Conjecture [1.1. 4 to $\varphi\left(W_{0} \cdot W_{1} \cdot g_{1}^{[-1]} \cdot g_{0}^{[-1]}\right)$ yields

$$
\begin{equation*}
\varphi\left(W_{0} \cdot W_{1} \cdot g_{1}^{[-1]} \cdot g_{0}^{[-1]}\right)=f_{1}^{[n-1]} \cdot f_{2}^{[n-1]} \cdot f_{3}^{[n-1]} \quad \text { for some } f_{3}=x_{3} f_{1}+f_{2}, \tag{11}
\end{equation*}
$$

where we have $f_{3}=x_{3} f_{1}+f_{2}$ since $\operatorname{Supp}(\varphi(S)) \subseteq\left\{f_{1}\right\} \cup\left(\left\langle f_{1}\right\rangle+f_{2}\right)$. Moreover, since $\left(f_{2}, f_{3}\right)$ must be a basis, it follows that

$$
\operatorname{gcd}\left(x_{3}, n\right)=1
$$

By (11), we have

$$
\begin{equation*}
\varphi\left(g_{0}\right)+\varphi\left(g_{1}\right)=-\sigma\left(\varphi\left(W_{0} \cdot W_{1} \cdot g_{0}^{[-1]} \cdot g_{1}^{[-1]}\right)\right)=f_{1}+f_{2}+f_{3}=\left(1+x_{3}\right) f_{2}+2 f_{2} \tag{12}
\end{equation*}
$$

Observe that $\Sigma_{n-2}\left(f_{2}^{[n-2]} \cdot f_{3}^{[n-2]}\right)=\{x f_{1}-2 f_{2}: \quad x \in \underbrace{\left\{0, x_{3}\right\}+\ldots+\left\{0, x_{3}\right\}}{ }_{n-2}\}$. Since $\operatorname{gcd}\left(x_{3}, n\right)=1$, it follows that $\underbrace{\left\{0, x_{3}\right\}+\ldots+\left\{0, x_{3}\right\}}{ }_{n-2}$ contains all residue classes modulo n except $(n-1) x_{3} \equiv-x_{3} \bmod n$. As a result, since $-1-x_{3} \not \equiv-x_{3} \bmod n$, it follows from (12) that $-\varphi\left(g_{0}\right)-\varphi\left(g_{1}\right) \in \Sigma_{n-2}\left(f_{2}^{[n-2]} \cdot f_{3}^{[n-2]}\right)$, which means (recall (111)) that there is an n-term subsequence $W_{1}^{\prime} \mid W_{0} \cdot W_{1}$ with $g_{0} \cdot g_{1} \mid W_{1}^{\prime}$ and $\varphi\left(W_{1}^{\prime}\right)$ zero-sum. Letting $W_{0}^{\prime}=W_{0} \cdot W_{1} \cdot\left(W_{1}^{\prime}\right)^{[-1]}$, it follows that $S^{*}=W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot W_{2} \ldots \ldots W_{2 m-2+k_{m}}$ is a block decomposition with $g_{1} \in \operatorname{Supp}\left(W_{1}^{\prime} \cdot g_{0}^{[-1]}\right)$ and $g_{2} \in \operatorname{Supp}\left(W_{2}\right)$. It now follows from Claim D, applied to this block decomposition with $k_{\emptyset}=1$ and $j=2$, that $g_{1}=g_{2}$ is good, as desired.

CASE 1. $n=2$.

In this case, $\operatorname{Supp}\left(\varphi\left(S^{*}\right)\right) \subseteq\left\{f_{1}\right\} \cup\left(\left\langle f_{1}\right\rangle+f_{2}\right)=\left\{f_{1}, f_{2}, f_{1}+f_{2}\right\}$ with f_{1}, f_{2} and $f_{1}+f_{2}$ the three nonzero elements of $\varphi(G)=C_{n} \oplus C_{n}=C_{2} \oplus C_{2}$. Claim F ensures that all terms of S are good, so (choosing $g_{0} \in g_{0}+\operatorname{ker} \varphi$ appropriately when $k_{n}=0$) we find

$$
\operatorname{Supp}\left(S^{*}\right)=\left\{e_{1}, e_{2}, e_{1}+e_{2}+\alpha\right\}
$$

for some $e_{1}, e_{2}, \alpha \in G$ with

$$
m e_{1}=\varphi\left(e_{1}\right)=f_{1}, \quad m e_{2}=\varphi\left(e_{2}\right)=f_{2} \quad \text { and } \quad m \alpha=\varphi(\alpha)=0 .
$$

Let $S^{*}=W_{0} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ be a block decomposition with $k_{\emptyset}=0$ having associated sequence $S_{\sigma}=\prod_{i \in\left[1,2 m-2+k_{m}\right]}^{\bullet} \sigma\left(W_{i}\right)$. In view of (8), we have $W_{0}=e_{1} \cdot e_{2} \cdot\left(e_{1}+e_{2}+\alpha\right)$ and $W_{i} \in$ $\left\{e_{1}^{[2]}, e_{2}^{[2]},\left(e_{1}+e_{2}+\alpha\right)^{[2]}\right\}$ for $i \geq 1$. Thus each term in S_{σ} is either equal to $2 e_{1}, 2 e_{2}$ or $2 e_{1}+2 e_{2}+2 \alpha$. In view of Claim B, we know Conjecture 1.1 holds for S_{σ}. Since all bases for $\varphi(G)=C_{n} \oplus C_{n}$ satisfy Claim C. 1 when $n=2$, we can replace the basis $\left(f_{1}, f_{2}\right)$ by any alternative one. Thus we can w.l.o.g. assume Conjecture 1.1 holds for S_{σ} using the basis $\left(2 e_{1}, 2 e_{2}\right)$ with $\operatorname{Supp}\left(S_{\sigma}\right)=\left\{2 e_{1}, 2 e_{2}, 2 e_{1}+2 e_{2}+2 \alpha\right\}$.

Suppose $k_{m}=1<m-1$. Then $m \geq 3, k=k_{m} n+k_{n} \in\{2,3\}$, and Conjecture 1.1 implies that $2 e_{1}$ occurs with multiplicity $m-1$ in $S_{\sigma}, 2 e_{2}$ occurs with multiplicity $x \geq 1$ in S_{σ}, $2 e_{1}+2 e_{2}+2 \alpha$ occurs with multiplicity $m-x \geq 1$ in S_{σ}, and $\left(2 e_{1}+2 e_{2}+2 \alpha\right)-2 e_{2} \in\left\langle 2 e_{1}\right\rangle$,
whence $e_{1}+e_{2}+\alpha=y e_{1}+(1+m) e_{2}$ or $y e_{1}+e_{2}$ for some $y \in[0,2 m-1]$. We can assume the latter does not occur, else Lemma 2.2 yields the desired structure for S. Hence, by swapping the basis $\left(f_{1}, f_{2}\right)$ with $\left(f_{1}, f_{1}+f_{2}\right)$ if need be, we can assume $x \geq m-x$ and

$$
S^{*}=e_{1}^{[2 m-1]} \cdot e_{2}^{[2 x+1]} \cdot\left(y e_{1}+(1+m) e_{2}\right)^{[2(m-x)+1]}
$$

for some $x \in\left[\frac{m}{2}, m-1\right]$ and $y \in[0,2 m-1]$. If $y=0$, then $e_{2}^{[m-1]} \cdot(1+m) e_{2}$ is a zero-sum subsequence of S with length m, contrary to (6). Therefore $y \geq 1$. If $y \geq 2$, or $k_{n}=1$, or $k_{n}=0$ with $\varphi\left(g_{0}\right) \neq f_{1}$, then $e_{1}^{[2 m-y]} \cdot e_{2}^{[m-1]} \cdot\left(y e_{1}+(1+m) e_{2}\right)$ is a nontrivial zero-sum subsequence of S with length $3 m-y \leq 3 m-1 \leq 4 m-4 \leq 2 m n-1-k$, contradicting (6). On the other hand, if $y=1, k_{n}=0$ and $\varphi\left(g_{0}\right)=f_{1}$, then $e_{1}^{[2 m-3]} \cdot e_{2}^{[m-3]} \cdot\left(e_{1}+(1+m) e_{2}\right)^{[3]}$ is a nontrivial zero-sum subsequence of S with length $3 m-3 \leq 4 m-4 \leq 2 m n-1-k$, again contradicting (6). So we can now assume either $k_{m} \in[2, m-1]$ or $m=2$.

In this case, Conjecture 1.1 holding for S_{σ} with basis $\left(2 e_{1}, 2 e_{2}\right)$ means $2 e_{1}$ and $2 e_{2}$ occur with multiplicity $m-1$ in $S_{\sigma}, 2 e_{1}+2 e_{2}+2 \alpha$ occurs with multiplicity k_{m} in S_{σ},

$$
\begin{equation*}
\left\langle 2 e_{1}+2 \alpha\right\rangle=\left\langle 2 e_{1}\right\rangle, \quad \text { and either } \quad 2 \alpha=0 \text { or } k_{m}=m-1 . \tag{13}
\end{equation*}
$$

Moreover, both $2 \alpha=0$ and $k_{m}=m-1=1$ when $m=2$. It follows that

$$
S^{*}=e_{1}^{[2 m-1]} \cdot e_{2}^{[2 m-1]} \cdot\left(e_{1}+e_{2}+\alpha\right)^{\left[2 k_{m}+1\right]} .
$$

If $H=\left\langle e_{1}, e_{2}\right\rangle$ is a proper subgroup, then S contains a subsequence with two distinct terms from H and length at least $4 m-3 \geq \eta(H)-1$, and thus contains a nontrivial zero-sum of length at $\operatorname{most} \exp (H) \leq 2 m$ using the established Conjecture 1.1.4, contrary to (6). Therefore $H=\left\langle e_{1}, e_{2}\right\rangle=G$, forcing (e_{1}, e_{2}) to be a basis for $G=C_{2 m} \oplus C_{2 m}$. If $\alpha \in\left\langle e_{1}\right\rangle$ or $\alpha \in\left\langle e_{2}\right\rangle$, then Lemma 2.2 implies that S has the desired structure, completing the proof. Hence we may assume otherwise, so in view of $m \alpha=0$ and $\left\langle 2 e_{1}+2 \alpha\right\rangle=\left\langle 2 e_{1}\right\rangle$, it follows that

$$
\alpha=x e_{1}+m e_{2} \quad \text { for some } x \in[1,2 m-1]
$$

with m even and

$$
\operatorname{ord}\left(2(1+x) e_{1}\right)=\operatorname{ord}\left(2 e_{1}+2 \alpha\right)=\operatorname{ord}\left(2 e_{1}\right)=m .
$$

We have two final subcases based upon which possibility occurs in (13).
Suppose $k_{m}=m-1 \geq 2$. Then $e_{1}+e_{2}+\alpha=(1+x) e_{1}+(1+m) e_{2}$. For $r \in\left[0, \frac{m}{2}-1\right]$, we have $T_{r}:=e_{2}^{[m-2 r-1]} \cdot\left((1+x) e_{1}+(1+m) e_{2}\right)^{[2 r+1]}$ as a subsequence of S with sum $(1+x) e_{1}+r \cdot 2(1+x) e_{1}$. Since ord $\left(2(1+x) e_{1}\right)=m$, it follows that $\left\{\sigma\left(T_{r}\right): r \in\left[0, \frac{m}{2}-1\right]\right\} \subseteq(1+x) e_{1}+[1, m]_{2 e_{1}}$ is a subset of cardinality $\frac{m}{2}$, so there must be some $r \in\left[0, \frac{m}{2}-1\right]$ such that $\sigma\left(T_{r}\right)=y e_{1}$ for some $y \in[1,2 m]$ with $y \geq 2\left(\frac{m}{2}-1\right)+1=m-1 \geq 2$. It follows that $e_{1}^{[2 m-y]} \cdot T_{r}$ is a nontrivial zero-sum subsequence of S with length $3 m-y \leq 2 m+1$, contradicting (6) (as $k \leq 2 m-2$).

Suppose $2 \alpha=0$. Then $e_{1}+e_{2}+\alpha=(1+m) e_{1}+(1+m) e_{2}$, else Lemma 2.2 yields the desired structure for S. If $2 k_{m}-1 \leq m$, then $e_{1}^{\left[m-2 k_{m}+1\right]} \cdot e_{2}^{\left[m-2 k_{m}+1\right]} \cdot\left((1+m) e_{1}+(1+m) e_{2}\right)^{2 k_{m}-1}$ is a nontrivial zero-sum subsequence of S with length $2 m-2 k_{m}+1 \leq 2 m-1$, contradicting (6).

On the other hand, if $2 k_{m}-1 \geq m+1$, then $e_{1} \cdot e_{2} \cdot\left((1+m) e_{1}+(1+m) e_{2}\right)^{m-1}$ is a nontrivial zero-sum subsequence of S with length $m+1 \leq 2 m+1$, again contradicting (6) and completing the case.

CASE 2. $n \geq 3$.
Since $n \geq 3$, if $S^{*}=W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is any block decomposition, then (8) ensures

$$
\begin{equation*}
f_{1} \in \operatorname{Supp}\left(\varphi\left(\widetilde{W}_{0}\right)\right) . \tag{14}
\end{equation*}
$$

Claim H. The term $f_{1} \in \operatorname{Supp}(\varphi(S))$ is good.
Proof. Let $S^{*}=W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ be a block decomposition with associated index $k_{\emptyset}=0$. If $f_{1} \in \operatorname{Supp}\left(\varphi\left(S \cdot W_{0}^{[-1]}\right)\right)$, then (14) together with Claim D implies that f_{1} is good. Therefore we can instead assume

$$
\begin{equation*}
\operatorname{Supp}\left(\varphi\left(S \cdot W_{0}^{[-1]}\right)\right) \subseteq\left\langle f_{1}\right\rangle+f_{2} \tag{15}
\end{equation*}
$$

We can also assume

$$
\begin{equation*}
\mathrm{v}_{f_{1}}(\varphi(S)) \geq 2 \tag{16}
\end{equation*}
$$

lest f_{1} being good holds trivially.
Let us show there are $g \in \operatorname{Supp}\left(\widetilde{W}_{0}\right)$ and $h \in \operatorname{Supp}\left(S \cdot W_{0}^{[-1]}\right)$ with $\varphi(g), \varphi(h) \in\left\langle f_{1}\right\rangle+f_{2}$ and

$$
\varphi(g)-\varphi(h)=z f_{1} \quad \text { for some } z \in[2, n-1] .
$$

Assuming this fails, let $x f_{1}+f_{2} \in \operatorname{Supp}\left(\varphi\left(\widetilde{W}_{0}\right)\right)$. Then (15) implies $\operatorname{Supp}\left(\varphi\left(S \cdot W_{0}^{[-1]}\right)\right) \subseteq$ $\left\{x f_{1}+f_{2},(x-1) f_{1}+f_{2}\right\}$. If $\mathrm{v}_{x f_{1}+f_{2}}(\varphi(S)) \geq m n>n$, then the term g is good by Claim G, in turn implying that $\mathrm{v}_{g}(S) \geq m n$, where $g \in \operatorname{Supp}(S)$ is the unique term with $\varphi(g)=x f_{1}+f_{2}$, whence $0 \in \Sigma_{m n}(S)$, contrary to (6). Therefore we can assume $\mathrm{v}_{x f_{1}+f_{2}}(\varphi(S)) \leq m n-1$, and thus $\mathrm{v}_{(x-1) f_{1}+f_{2}}\left(\varphi\left(S \cdot W_{0}^{[-1]}\right)\right) \geq\left(2 m-2+k_{m}\right) n-m n+1 \geq m n-n+1>n$. Claim G now ensures that the term $(x-1) f_{1}+f_{2}$ is also good, and thus has multiplicity at most $m n-1$ in $\varphi(S)$ lest we obtain the same contradiction as before. There are at least $\left(2 m-2+k_{m}\right) n+n-1 \geq 2 m n-1$ terms of $\varphi(S)$ from $\left\langle f_{1}\right\rangle+f_{2}$. As a result, it follows that there is some $x^{\prime} f_{1}+f_{2} \in \operatorname{Supp}\left(\varphi\left(\widetilde{W}_{0}\right)\right)$ with $x^{\prime} f_{1} \notin\left\{x f_{1},(x-1) f_{1}\right\}$. But now, taking $g^{\prime}=x^{\prime} f_{1}+f_{2}$ and $h^{\prime}=(x-1) f_{1}+f_{2} \in$ $\operatorname{Supp}\left(\varphi\left(S \cdot W_{0}^{[-1]}\right)\right)$, we find that $g^{\prime}-h^{\prime}=z f_{1}$ with $z \in[2, n-1]$, as desired. Thus the existence of g and h is established.

Let $j \in\left[1,2 m-2+k_{m}\right]$ be an index with $h \in \operatorname{Supp}\left(W_{j}\right)$. In view of (15) and (16), let $g_{1} \cdot g_{2} \mid \widetilde{W}_{0}$ be a length two subsequence with $\varphi\left(g_{1}\right)=\varphi\left(g_{2}\right)=f_{1}$. Since $1 \leq n-z \leq n-2$ and $\mathrm{v}_{f_{1}}\left(\varphi\left(W_{0} \cdot g_{2}^{[-1]}\right)\right)=n-2$, it follows that there is a subsequence $T \mid W_{0} \cdot g_{2}^{[-1]}$ with $\varphi(T)=f_{1}^{[n-z]}$ and $g_{1} \in \operatorname{Supp}(T)$. Since $\varphi(g) \in\left\langle f_{1}\right\rangle+f_{2}$, we have $g \notin \operatorname{Supp}(T)$. Set

$$
W_{0}^{\prime}=W_{0} \cdot T^{[-1]} \cdot g^{[-1]} \cdot h \quad \text { and } \quad W_{j}^{\prime}=W_{j} \cdot h^{[-1]} \cdot g \cdot T
$$

with $W_{i}^{\prime}=W_{i}$ for $i \neq 0, j$. Then, by construction, $S^{*}=W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \cdot W_{2 m-2+k_{m}}^{\prime}$ is a weak block decomposition with associated index $k_{\emptyset}^{\prime} \in\{0, j\}$. Moreover, $g_{2} \in \operatorname{Supp}\left(\widetilde{W}_{0}^{\prime}\right)$ and $g_{1} \in \operatorname{Supp}\left(\widetilde{W}{ }_{j}^{\prime}\right)$
with $\varphi\left(g_{1}\right)=\varphi\left(g_{2}\right)=f_{1}$. Thus applying Claim D to $S^{*}=W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \cdot W_{2 m-2+k_{m}}^{\prime}$ implies f_{1} is good, completing the claim.

Let $e_{1} \in \operatorname{Supp}(S)$ with $\varphi\left(e_{1}\right)=f_{1}$, which exists in view of (14). By Claim H, every $g \in$ $\operatorname{Supp}(S)$ with $\varphi(g)=f_{1}$ has $g=e_{1}$, and if $k_{n}=0$ with $\varphi\left(g_{0}\right)=f_{1}=\varphi\left(e_{1}\right)$, we can choose $g_{0} \in g_{0}+\operatorname{ker} \varphi$ appropriately so that $g_{0}=e_{1}$, thereby ensuring that every $g \in \operatorname{Supp}\left(S^{*}\right)$ with $\varphi(g)=f_{1}$ has $g=e_{1}$.

Claim I. If $g, h \in \operatorname{Supp}(S)$ with $\varphi(g), \varphi(h) \in\left\langle f_{1}\right\rangle+f_{2}$, then $g-h \in\left\langle e_{1}\right\rangle$.
Proof. Let $S^{*}=W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ be a block decomposition with associated index $k_{\emptyset}=0$ and associated sequence $S_{\sigma}=\prod_{i \in\left[1,2 m-2+k_{m}\right]}^{\bullet} \sigma\left(W_{i}\right)$. Since f_{1} is good (by Claim H), we have $\mathrm{v}_{f_{1}}(\varphi(S)) \leq m n-1$, lest S contain an $m n$-term zero-sum, contrary to (6). Thus, since each $\varphi\left(W_{i}\right)$, for $i \in\left[1,2 m-2+k_{m}\right]$, either consists of n terms equal to f_{1} or no terms equal to f_{1} (in view of (8)), it follows that $\mathrm{v}_{f_{1}}\left(\varphi\left(S \cdot W_{0}^{[-1]}\right)\right) \leq(m-1) n$, meaning there are at least $\left(2 m-2+k_{m}-(m-1)\right) n \geq m n$ terms of $\varphi\left(S \cdot W_{0}^{[-1]}\right)$ from $\left\langle f_{1}\right\rangle+f_{2}$. These terms cannot all be equal to each other, lest they would be good by Claim G giving rise to an element with multiplicity at least $m n$ in S, contradicting (6) as before. Therefore

$$
\begin{equation*}
\left|\operatorname{Supp}\left(\varphi\left(S \cdot W_{0}^{[-1]}\right)\right) \backslash\left\{f_{1}\right\}\right| \geq 2 . \tag{17}
\end{equation*}
$$

For $x \in[0, n-1]$, let $L_{x} \mid \widetilde{W}_{0}$ be the subsequence of \widetilde{W}_{0} consisting of all terms g with $\varphi(g)=x f_{1}+f_{2}$, and let $R_{x} \mid S \cdot W_{0}^{[-1]}$ be the subsequence of $S \cdot W_{0}^{[-1]}$ consisting of all terms g with $\varphi(g)=x f_{1}+f_{2}$. Let $I_{L} \subseteq[0, n-1]$ be all those $x \in[0, n-1]$ with L_{x} nontrivial, and let $I_{R} \subseteq[0, n-1]$ be all those $x \in[0, n-1]$ with R_{x} nontrivial. By a slight abuse of notation, we consider the subscripts on the L_{x} and R_{x} modulo n. In view of (17),

$$
\left|I_{R}\right| \geq 2
$$

Let $g \in \operatorname{Supp}\left(\widetilde{W}_{0}\right)$ and $h \in \operatorname{Supp}\left(S \cdot W_{0}^{[-1]}\right)$ be arbitrary with $\varphi(g), \varphi(h) \in\left\langle f_{1}\right\rangle+f_{2}$, and let

$$
\varphi(g)-\varphi(h)=z f_{1} \quad \text { with } z \in[1, n] .
$$

Suppose $k_{n}=0$ and $\varphi\left(g_{0}\right) \neq f_{1}$. Then $e_{1}^{[n-z]} \cdot g \mid \widetilde{W}_{0}$. Set $W_{0}^{\prime}=W_{0} \cdot\left(e_{1}^{[n-z]} \cdot g\right)^{[-1]} \cdot h$, $W_{j}^{\prime}=W_{j} \cdot h^{[-1]} \cdot e_{1}^{[n-z]} \cdot g$ and $W_{i}^{\prime}=W_{i}$ for $i \neq 0, j$, where $h \in \operatorname{Supp}\left(W_{j}\right)$. Then $S^{*}=$ $W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \ldots \cdot W_{2 m-2+k_{m}}$ is a weak block decomposition with $g_{0} \in \operatorname{Supp}\left(W_{0}^{\prime}\right)$, associated index $k_{\emptyset}^{\prime}=k_{\emptyset}=0\left(\operatorname{as} g \in \operatorname{Supp}\left(W_{0}^{\prime}\right)\right)$ and associated sequence $S_{\sigma}^{\prime}=\prod_{i \in\left[1,2 m-2+k_{m}\right]}^{\bullet} \sigma\left(W_{i}^{\prime}\right)$. Note that S_{σ}^{\prime} is obtained from S_{σ} by replacing the term $\sigma\left(W_{j}\right)$ by $\sigma\left(W_{j}^{\prime}\right)=\sigma\left(W_{j}\right)-h+g+(n-z) e_{1}$. By Lemma 2.1 and Claim B, we must have $S_{\sigma}=S_{\sigma}^{\prime}$, implying $\sigma\left(W_{j}\right)=\sigma\left(W_{j}^{\prime}\right)$ and $g-h \in\left\langle e_{1}\right\rangle$. As this is true for arbitrary $g \in \operatorname{Supp}\left(\widetilde{W}_{0}\right)$ and $h \in \operatorname{Supp}\left(S \cdot W_{0}^{[-1]}\right)$, the claim is complete in this case, allowing us to assume $k_{n}=1$ or $\varphi\left(g_{0}\right)=f_{1}$. In particular, it now follows from (8) that

$$
\left|I_{L}\right| \geq 2
$$

(as $x_{1}+\ldots+x_{n} \equiv 1 \bmod n$ ensures not all x_{i} are equal to each other).

Suppose $z \geq 2$ for g and h as before. Then $e_{1}^{[n-z]} \cdot g \mid \widetilde{W}_{0}$. Set $W_{0}^{\prime}=W_{0} \cdot\left(e_{1}^{[n-z]} \cdot g\right)^{[-1]} \cdot h$, $W_{j}^{\prime}=W_{j} \cdot h^{[-1]} \cdot e_{1}^{[n-z]} \cdot g$ and $W_{i}^{\prime}=W_{i}$ for $i \neq 0, j$, where $h \in \operatorname{Supp}\left(W_{j}\right)$. Then $S^{*}=$ $W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \ldots \cdot W_{2 m-2+k_{m}}$ is a weak block decomposition with associated index k_{\emptyset}^{\prime}. If $k_{n}=0$, then $g_{0} \in \operatorname{Supp}\left(W_{0}^{\prime}\right)$, ensuring $k_{\emptyset}^{\prime}=k_{\emptyset}=0$; if $k_{n}=1$, then $\left|W_{0}^{\prime}\right|=\left|W_{0}\right|-(n-z) \geq n+1$ follows in view of $z \geq 2$, also ensuring that $k_{\emptyset}^{\prime}=k_{\emptyset}=0$. Applying Lemma 2.1 and Claim B, we find that g and h are from the same $\left\langle e_{1}\right\rangle$-coset as before.

The argument from the previous paragraph shows that, for any $x \in I_{L}$, all terms from L_{x} are from the same $\left\langle e_{1}\right\rangle$-coset as all terms from R_{y}, for any $y \not \equiv x-1 \bmod n$. If all terms from $\prod_{y \in I_{R}}^{\bullet} R_{y}$ are from the same $\left\langle e_{1}\right\rangle$-coset, then each $x \in I_{L}$ would have all terms from L_{x} being from the same $\left\langle e_{1}\right\rangle$-coset as all terms from some R_{y} with $y \in I_{R}$ (as $\left|I_{R}\right| \geq 2$), and thus from the same $\left\langle e_{1}\right\rangle$-coset that contains all terms from $\prod_{y \in I_{R}}^{\bullet} R_{y}$. As this would be true for any $x \in I_{L}$, there would only be one $\left\langle e_{1}\right\rangle$-coset containing all $g \in \operatorname{Supp}(S)$ with $\varphi(g) \in\left\langle f_{1}\right\rangle+f_{2}$, completing the proof of the claim. Therefore we can instead assume we need at least two $\left\langle e_{1}\right\rangle$-cosets to cover all terms from $\prod_{y \in I_{R}}^{\bullet} R_{y}$. In particular, for any $x \in I_{L}$, we must have $x-1 \in I_{R}$, so $I_{L}-1 \subseteq I_{R} \bmod n$. Likewise, since $\left|I_{L}\right| \geq 2$, we can assume we need at least two $\left\langle e_{1}\right\rangle$-cosets to cover all terms from $\prod_{x \in I_{L}}^{\bullet} L_{x}$, and thus for any $y \in I_{R}$, we have $y+1 \in I_{L}$, so $I_{R}+1 \subseteq I_{L}$ $\bmod n$. It follows that $\left|I_{L}\right|=\left|I_{R}\right|$ with

$$
I_{R}=\left\{x-1: x \in I_{L}\right\} \quad \bmod n .
$$

Suppose $\left|I_{R}\right| \geq 3$. Letting $x_{1}, x_{2} \in I_{L}$ be distinct, then all terms from $\prod_{y \in I_{R} \backslash\left\{x_{1}-1\right\}}^{\bullet} R_{y}$ are from the same $\left\langle e_{1}\right\rangle$-cost as the terms from $L_{x_{1}}$, while all terms from $\prod_{y \in I_{R} \backslash\left\{x_{2}-1\right\}}^{\bullet} R_{y}$ are from the same $\left\langle e_{1}\right\rangle$-cost as the terms from $L_{x_{2}}$. Since $\left|I_{R}\right| \geq 3$, there would be a common element $y \in I_{R} \backslash\left\{x_{1}-1, x_{2}-1\right\}$, forcing all terms from $\prod_{y \in I_{R}}^{\bullet} R_{y}$ to be from the same $\left\langle e_{1}\right\rangle$-coset, which we just assumed was not the case. So we instead conclude that $\left|I_{L}\right|=\left|I_{R}\right|=2$. Let

$$
I_{L}=\{x, y\} \quad \text { and } \quad I_{R}=\{x-1, y-1\} \quad \bmod n .
$$

In view of (8), any W_{j} with $j \in\left[1,2 m-2+k_{m}\right]$ that contains a term h with $\varphi(h) \in\left\langle f_{1}\right\rangle+f_{2}$ must have all its terms from $\left\langle f_{1}\right\rangle+f_{2}$. Thus, since $\left|W_{j}\right|=n \geq 3$ and $\left|I_{R}\right|=2$, the Pigeonhole Principle ensures that there are $h_{1} \cdot h_{2} \mid W_{j}$ with $\varphi\left(h_{1}\right)=\varphi\left(h_{2}\right)$, say w.l.o.g. $\varphi\left(h_{1}\right)=\varphi\left(h_{2}\right)=$ $(x-1) f_{1}+f_{2}$. By definition of $I_{L}=\{x, y\}$, there are $g_{1} \cdot g_{2} \mid \widetilde{W}_{0}$ with $\varphi\left(g_{1}\right)=x f_{1}+f_{2}$ and $\varphi\left(g_{2}\right)=y f_{1}+f_{2}$. Let

$$
\begin{equation*}
z^{\prime} \equiv x+y-2(x-1) \quad \bmod n \quad \text { with } z^{\prime} \in[1, n] . \tag{18}
\end{equation*}
$$

Suppose $z^{\prime} \geq 2$. Then $e_{1}^{\left[n-z^{\prime}\right]} \cdot g_{1} \cdot g_{2} \mid \widetilde{W}_{0}$. Set $W_{0}^{\prime}=W_{0} \cdot\left(e_{1}^{\left[n-z^{\prime}\right]} \cdot g_{1} \cdot g_{2}\right)^{[-1]} \cdot h_{1} \cdot h_{2}$, $W_{j}^{\prime}=W_{j} \cdot h_{1}^{[-1]} \cdot \cdot_{2}^{[-1]} \cdot e_{1}^{\left[n-z^{\prime}\right]} \cdot g_{1} \cdot g_{2}$ and $W_{i}^{\prime}=W_{i}$ for $i \neq 0, j$. Then $S^{*}=W_{0}^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \ldots \cdot W_{2 m-2+k_{m}}$ is a weak block decomposition say with associated index k_{\emptyset}^{\prime} and associated sequence S_{σ}^{\prime}. If $k_{n}=0$, then $g_{0} \in \operatorname{Supp}\left(W_{0}^{\prime}\right)$, ensuring $k_{\emptyset}^{\prime}=k_{\emptyset}=0$; if $k_{n}=1$, then $\left|W_{0}^{\prime}\right|=\left|W_{0}\right|-\left(n-z^{\prime}\right) \geq n+1$ follows in view of $z^{\prime} \geq 2$, also ensuring that $k_{\emptyset}^{\prime}=k_{\emptyset}=0$. By Lemma 2.1 and Claim B, it follows that
$S_{\sigma}=S_{\sigma}^{\prime}$, and thus

$$
\begin{equation*}
\sigma\left(W_{j}\right)=\sigma\left(W_{j}^{\prime}\right)=\sigma\left(W_{j}\right)+\left(n-z^{\prime}\right) e_{1}+g_{1}+g_{2}-h_{1}-h_{2} . \tag{19}
\end{equation*}
$$

Since $\varphi\left(g_{2}\right)=y f_{1}+f_{2}$ and $\varphi\left(h_{2}\right)=(x-1) f_{2}+f_{2}$, we have $g_{2} \in \operatorname{Supp}\left(L_{y}\right)$ and $h_{2} \in \operatorname{Supp}\left(R_{x-1}\right)$, so our previous argument ensures g_{2} and h_{2} are from the same $\left\langle e_{1}\right\rangle$-coset, and then (19) implies that g_{1} and h_{1} are from the same $\left\langle e_{1}\right\rangle$-coset. Since $\varphi\left(g_{1}\right)=x f_{1}+f_{2}$ and $\varphi\left(h_{1}\right)=(x-1) f_{2}+f_{2}$, so $g_{1} \in \operatorname{Supp}\left(L_{x}\right)$ and $h_{1} \in \operatorname{Supp}\left(R_{x-1}\right)$, the terms from L_{x} are from the same $\left\langle e_{1}\right\rangle$-coset as both R_{x-1} and R_{y-1}, contradicting our assumption that we need at least two $\left\langle e_{1}\right\rangle$-cosets to cover the terms from $\prod_{z \in I_{R}}^{\bullet} R_{z}=R_{x-1} \cdot R_{y-1}$. So we are left to conclude $z^{\prime}=1$, which by (18) means

$$
\begin{equation*}
y \equiv x-1 \quad \bmod n . \tag{20}
\end{equation*}
$$

Since $I_{R}=\{x-1, y-1\}$, there is some $j \in\left[1,2 m-2+k_{m}\right]$ and $h \in \operatorname{Supp}\left(W_{j}\right)$ with $\varphi(h)=(y-1) f_{1}+f_{2}$. In view of (8), we have $\operatorname{Supp}\left(\varphi\left(W_{j}\right)\right) \subseteq\left\langle f_{1}\right\rangle+f_{2}$, and thus all terms from $\varphi\left(W_{j}\right)$ are either equal to $(x-1) f_{1}+f_{2}$ or $(y-1) f_{1}+f_{2}$. Since $\varphi\left(W_{j}\right)$ is an n-term zerosum, it cannot have a term with multiplicity exactly $n-1$, so there must be $h_{1} \cdot h_{2} \mid W_{j}$ with $\varphi\left(h_{1}\right)=\varphi\left(h_{2}\right)=(y-1) f_{1}+f_{2}$. Repeating the argument of the previous paragraph swapping the roles of y and x, we conclude that $x \equiv y-1 \bmod n$. Combined with (20), it follows that $0 \equiv 2 \bmod n$, contradicting that $n \geq 3$, which concludes the claim.

Note that any $g \in \operatorname{Supp}(S)$ with $\varphi(g) \neq f_{1}$ has $\varphi(g)=x f_{1}+f_{2}$ for some $x \in[0, n-1]$ by Claim C.1. Thus, in view of Claims H and I, we see that $\operatorname{Supp}(S) \subseteq\left\{e_{1}\right\} \cup\left(\left\langle e_{1}\right\rangle+e_{2}\right)$ for some $e_{2} \in \operatorname{Supp}(S)$. This allow us to apply Lemma 2.2 to S to complete the proof.

Next, we consider the case when $k_{n} \in[2, n-1]$.
Proposition 3.2. Let $m, n \geq 2$ and let $k \in[0, m n-1]$ with $n=k_{m} n+k_{n}$, where $k_{m} \in[0, m-1]$ and $k_{n} \in[2, n-1]$. Suppose Conjecture 1.1 holds for k_{n} in $C_{n} \oplus C_{n}$. Suppose either Conjecture 1.1 also holds for k_{m} in $C_{m} \oplus C_{m}$, or else $k_{m} \in[1, m-2]$ and Conjecture 1.1 also holds for $k_{m}+1$ in $C_{m} \oplus C_{m}$. Then Conjecture 1.1 holds for k in $C_{m n} \oplus C_{m n}$.

Proof. Let $G=C_{m n} \oplus C_{m n}$ and let $S \in \mathcal{F}(G)$ be a sequence with

$$
\begin{equation*}
|S|=2 m n-2+k \quad \text { and } \quad 0 \notin \Sigma_{\leq 2 m n-1-k}(G) . \tag{21}
\end{equation*}
$$

Since $k_{m} \in[0, m-1]$ and $k_{n} \in[2, n-1]$, we have $n \geq 3$ and $k=k_{m} n+k_{n} \in[2, m n-1]$. Since Conjecture 1.1 is known for $k=m n-1$ (as remarked in the introduction), we can assume $k=k_{m} n+k_{n} \in[2, m n-2]$. We need to show Conjecture 1.1.3 holds for S. Let $\varphi: G \rightarrow G$ be the multiplication by m homomorphism, so $\varphi(x)=m x$. Note

$$
\varphi(G)=m G \cong C_{n} \oplus C_{n} \quad \text { and } \quad \operatorname{ker} \varphi=n G \cong C_{m} \oplus C_{m} .
$$

Define a block decomposition of S to be a factorization

$$
S=W \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}
$$

with $1 \leq\left|W_{i}\right| \leq n$ and $\varphi\left(W_{i}\right)$ zero-sum for each $i \in\left[1,2 m-2+k_{m}\right]$. Since $\mathbf{s}_{\leq n}(\varphi(G))=$ $\mathrm{s}_{\leq n}\left(C_{n} \oplus C_{n}\right)=3 n-2$ and $|S|=\left(2 m-3+k_{m}\right) n+3 n-2+k_{n} \geq\left(2 m-3+k_{m}\right) n+3 n-2$, it follows by repeated application of the definition of $\mathbf{s}_{\leq n}(\varphi(G))$ that S has a block decomposition.

Claim A. If $S=W \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a block decomposition of S, then $\left|W_{i}\right|=n$ for all $i \in\left[1,2 m-2+k_{m}\right],|W|=2 n-2+k_{n}, 0 \notin \Sigma_{\leq 2 n-1-k_{n}}(\varphi(W))$, and $0 \notin \Sigma_{\leq n-1}(\varphi(S))$. In particular, Conjecture 1.1 holds for $\varphi(W)$.

Proof. Suppose $0 \in \Sigma_{\leq 2 n-1-k_{n}}(\varphi(W))$. Then there is a nontrivial subsequence $W_{0} \mid W$ with $\left|W_{0}\right| \leq 2 n-1-k_{n}$ and $\varphi\left(W_{0}\right)$ zero-sum. Now $\sigma\left(W_{0}\right) \cdot \sigma\left(W_{1}\right) \cdot \ldots \cdot \sigma\left(W_{2 m-2+k_{m}}\right)$ is a sequence of $2 m-1+k_{m}$ terms from $\operatorname{ker} \varphi \cong C_{m} \oplus C_{m}$. Since $\mathbf{s}_{\leq 2 m-1-k_{m}}\left(C_{m} \oplus C_{m}\right)=2 m-1+k_{m}$, it follows that it has a nontrivial zero-sum sequence, say $\prod_{i \in I}^{\bullet} \sigma\left(W_{i}\right)$ for some nonempty $I \subseteq\left[0,2 m-2+k_{m}\right]$ with $|I| \leq 2 m-1-k_{m}$. But then $\prod_{i \in I}^{\bullet} W_{i}$ is a nontrivial zero-sum subsequence of S with

$$
\left|\prod_{i \in I}^{\bullet} W_{i}\right| \leq \max \left\{\left|W_{0}\right|, n\right\}+(|I|-1) n \leq 2 n-1-k_{n}+\left(2 m-2-k_{m}\right) n=2 m n-1-k,
$$

contradicting (21). So we instead conclude that $0 \notin \Sigma_{\leq 2 n-1-k_{n}}(\varphi(W))$.
As a result, since $\mathbf{s}_{\leq 2 n-1-k_{n}}(\varphi(G))=\mathbf{s}_{\leq 2 n-1-k_{n}}\left(C_{n} \oplus C_{n}\right)=2 n-1+k_{n}$, and since $\left|W_{i}\right| \leq n$ for all $i \in\left[1,2 m-2+k_{m}\right]$, it follows that

$$
2 n-2+k_{n}=2 m n-2+k-\left(2 m-2+k_{m}\right) n \leq|S|-\sum_{i=1}^{2 m-2+k_{m}}\left|W_{i}\right|=|W| \leq 2 n-2+k_{n},
$$

forcing equality to hold in our estimates, i.e., $\left|W_{i}\right|=n$ for all $i \in\left[1,2 m-2+k_{m}\right]$ and $|W|=$ $2 n-2+k_{n}$. If $0 \in \Sigma_{\leq n-1}(\varphi(S))$, then we can find a nontrivial subsequence $W_{1}^{\prime} \mid S$ with $\varphi\left(W_{1}^{\prime}\right)$ zero-sum and $\left|W_{1}^{\prime}\right| \leq n-1$. Applying the argument used to show the existence of a block decomposition, we obtain a block decomposition $S=W^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \cdot W_{2 m-2+k_{m}}^{\prime}$ with $\left|W_{1}^{\prime}\right| \leq n-1$, contradicting what was just shown. Therefore $0 \notin \Sigma_{\leq n-1}(\varphi(S))$. Finally, since $|W|=2 n-2+k_{n}$ and $0 \notin \Sigma_{\leq 2 n-1-k_{n}}(\varphi(W))$ with Conjecture 1.1holding for k_{n} in $C_{n} \oplus C_{n}$ by hypothesis, it follows that Conjecture 1.1 holds for $\varphi(W)$, completing the claim.

Suppose

$$
S=W \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}
$$

with each $\varphi\left(W_{i}\right)$ a nontrivial zero-sum for $i \in\left[1,2 m-2+k_{m}\right]$ and $|W| \geq n-1+2 k_{n}$. We call this a weak block decomposition of S with associated sequence

$$
S_{\sigma}=\sigma\left(W_{1}\right) \cdot \ldots \cdot \sigma\left(W_{2 m-2+k_{m}}\right) \in \mathcal{F}(\operatorname{ker} \varphi)
$$

Since $2 n-2+k_{n} \geq n-1+2 k_{n}$, any block decomposition is also a weak block decomposition. Suppose

$$
S=W \cdot W_{0} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}
$$

with each $\varphi\left(W_{i}\right)$ a nontrivial zero-sum for $i \in\left[0,2 m-2+k_{m}\right],\left|W_{i}\right|=n$ for all $i \in\left[1,2 m-2+k_{m}\right]$, and $\left|W_{0}\right| \leq 3 n-1-k_{n}$. We call this an augmented block decomposition of S. In such case,
$S=\left(W \cdot W_{0}\right) \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a block decomposition of S with associated sequence S_{σ}, and we call

$$
\widetilde{S}_{\sigma}=\sigma\left(W_{0}\right) \cdot S_{\sigma}=\sigma\left(W_{0}\right) \cdot \sigma\left(W_{1}\right) \cdot \ldots \cdot \sigma\left(W_{2 m-2+k_{m}}\right) \in \mathcal{F}(\operatorname{ker} \varphi)
$$

the associated sequence for the augmented block decomposition. Conversely, if $S=W \cdot W_{1}$. $\ldots \cdot W_{2 m-2+k_{m}}$ is a block decomposition, then Claim A ensures that $|W|=2 n-1+\left(k_{n}-1\right)=$ $\mathrm{s}_{\leq 2 n-k_{n}}\left(\operatorname{ker} \varphi\right.$) (in view of $k_{n} \geq 1$). As a result, there is a nontrivial subsequence $W_{0} \mid W$ with $\varphi\left(W_{0}\right)$ zero-sum and $\left|W_{0}\right| \leq 2 n-k_{n} \leq 3 n-1-k_{n}$, ensuring $\left(W \cdot W_{0}^{[-1]}\right) \cdot W_{0} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is an augmented block decomposition, showing such decompositions exist.

Claim B.

1. If $S=W \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a weak block decomposition with associated sequence S_{σ}, then $\left|S_{\sigma}\right|=2 m-2+k_{m}$ and $0 \notin \Sigma_{\leq 2 m-1-k_{m}}\left(S_{\sigma}\right)$. If it is also a block decomposition, then Conjecture 1.1 holds for S_{σ}.
2. If $S=W \cdot W_{0} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is an augmented block decomposition with associated sequence \widetilde{S}_{σ}, then $\left|\widetilde{S}_{\sigma}\right|=2 m-1+k_{m}$ and $0 \notin \Sigma_{\leq 2 m-2-k_{m}}\left(\widetilde{S}_{\sigma}\right)$. Moreover, if $k_{m} \in$ $[0, m-2]$, then Conjecture 1.1 holds for \widetilde{S}_{σ}.

Proof. If $S=W \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a weak block decomposition with associated sequence S_{σ}, then $\left|S_{\sigma}\right|=2 m-2+k_{m}$ holds by definition. If $0 \in \Sigma_{\leq 2 m-1-k_{m}}\left(S_{\sigma}\right)$, then there is some $I \subseteq\left[1,2 m-2+k_{m}\right]$ with $1 \leq|I| \leq 2 m-1+k_{m}$ and $\prod_{i \in I}^{\bullet} \sigma\left(W_{i}\right)$ zero-sum. In such case, since $\left|W_{i}\right| \geq n$ for all $i \in\left[1,2 m-2+k_{m}\right]$ by Claim A, we find that $\prod_{i \in I}^{\bullet} W_{i}$ is a nontrivial zero-sum subsequence of S with length at most

$$
\begin{aligned}
& (|S|-|W|)-\left(2 m-2+k_{m}-|I|\right) n=2 n-2+k_{n}-|W|+|I| n \\
& \leq 2 m n-2+n+k_{n}-k_{m} n-|W| \leq 2 m n-1-k_{m} n-k_{n}=2 m n-1-k,
\end{aligned}
$$

with the final inequality in view of the definition of a weak block decomposition, which contradicts the hypothesis $0 \notin \Sigma_{\leq 2 m n-1-k}(S)$. Therefore $0 \notin \Sigma_{\leq 2 m-1-k_{m}}\left(S_{\sigma}\right)$.

If $S=W \cdot W_{0} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is an augmented block decomposition with associated sequence $\widetilde{S}_{\sigma}=\sigma\left(W_{0}\right) \cdot S_{\sigma}$, then $\left|\widetilde{S}_{\sigma}\right|=2 m-1+k_{m}$ holds by definition. If $0 \in \Sigma_{\leq 2 m-2-k_{m}}\left(\widetilde{S}_{\sigma}\right)$, then there is some $I \subseteq\left[0,2 m-2+k_{m}\right]$ with $1 \leq|I| \leq 2 m-2-k_{m}$ and $\prod_{i \in I}^{\bullet} \sigma\left(W_{i}\right)$ zero-sum. In such case, since $\left|W_{i}\right|=n$ for all $i \geq 1$ and $\left|W_{0}\right| \leq 3 n-1-k_{n}$, we find that $\prod_{i \in I}^{*} W_{i}$ is a nontrivial zero-sum subsequence of S with length at most $\max \left\{|I| n,\left|W_{0}\right|+(|I|-1) n\right\} \leq$ $3 n-1-k_{n}+\left(2 m-3-k_{m}\right) n=2 m n-1-k$, which contradicts the hypothesis $0 \notin \Sigma_{\leq 2 m n-1-k}(S)$. Therefore $0 \notin \Sigma_{\leq 2 m-2-k_{m}}\left(\widetilde{S}_{\sigma}\right)$.

Suppose $S=W \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a block decomposition with associated sequence S_{σ}. As noted above Claim B, there exists some $W_{0} \mid W$ such that $\left(W \cdot W_{0}^{[-1]}\right) \cdot W_{0} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is an augmented block decomposition with associated sequence $\sigma\left(W_{0}\right) \cdot S_{\sigma}$. As already shown, $0 \notin \Sigma_{\leq 2 m-2-k_{m}}\left(\sigma\left(W_{0}\right) \cdot S_{\sigma}\right)$ with $\left|\sigma\left(W_{0}\right) \cdot S_{\sigma}\right|=2 m-1+k_{m}$. By hypothesis, either Conjecture 1.1 holds for k_{m} in $C_{m} \oplus C_{m}$, or else $k_{m} \in[1, m-2]$ and Conjecture 1.1 holds for $k_{m}+1$ in
$C_{m} \oplus C_{m}$. In the former case, Conjecture 1.1 holds for S_{σ} in view of the already established $\left|S_{\sigma}\right|=2 m-2+k_{m}$ and $0 \notin \Sigma_{\leq 2 m-1-k_{m}}\left(S_{\sigma}\right)$. In the latter case, Conjecture 1.1 holds for $\sigma\left(W_{0}\right) \cdot S_{\sigma}$ in view of the already established $\left|\sigma\left(W_{0}\right) \cdot S_{\sigma}\right|=2 m-1+k_{m}$ and $0 \notin \Sigma_{\leq 2 m-2-k_{m}}\left(\Sigma\left(W_{0}\right) \cdot S_{\sigma}\right)$, which combined with Lemma 2.4 ensures that it does so with respect to some basis $\left(f_{1}, f_{2}\right)$ with $\sigma\left(W_{0}\right)=f_{1}+f_{2}$ and Conjecture 1.1 holding for S_{σ}. Thus Conjecture 1.1 holds for S_{σ} in both cases.

Suppose $S=W \cdot W_{0} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is an augmented block decomposition with associated sequence $\widetilde{S}_{\sigma}=\sigma\left(W_{0}\right) \cdot S_{\sigma}$. As noted above Claim B, $\left(W \cdot W_{0}\right) \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a block decomposition of S with associated sequence S_{σ}. As already shown, $\left|S_{\sigma}\right|=2 m-2+k_{m}$ and $0 \notin \Sigma_{\leq 2 m-1-k_{m}}\left(S_{\sigma}\right)$ with Conjecture 1.1 holding for S_{σ}. As a result, if $k_{m} \in[1, m-2]$, then Lemma 2.3 implies that Conjecture 1.1 holds for \widetilde{S}_{σ}. On the other hand, If $k_{m}=0$, then Conjecture 1.1 is known to hold without condition for k_{m} and $k_{m}+1$ in $C_{m} \oplus C_{m}$, ensuring that Conjecture 1.1 holds for \widetilde{S}_{σ}. Thus Conjecture 1.1 holds for \widetilde{S}_{σ} in both cases, completing the claim.

Claim C. There exists a basis $\left(\bar{e}_{1}, \bar{e}_{2}\right)$ for $\varphi(G)$ such that $\operatorname{Supp}(\varphi(S))=\left\{\bar{e}_{1}, \bar{e}_{2}, x \bar{e}_{1}+\bar{e}_{2}\right\}$ for some $x \in[1, n-1]$ with $\operatorname{gcd}(x, n)=1$ and either $x=1$ or $k_{n}=n-1$. In particular, any block decomposition $S=W \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ has $\varphi(W)=\bar{e}_{1}^{[n-1]} \cdot \bar{e}_{2}^{[n-1]} \cdot\left(x \bar{e}_{1}+\bar{e}_{2}\right)^{\left[k_{n}\right]}$ with $\varphi\left(W_{i}\right) \in\left\{\bar{e}_{1}^{[n]}, \bar{e}_{2}^{[n]},\left(x \bar{e}_{1}+\bar{e}_{2}\right)^{[n]}\right\}$ for all $i \in\left[1,2 m-2+k_{m}\right]$.

Proof. Let $S=W \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ be an arbitrary block decomposition. Then Claim A ensures that Conjecture 1.1 holds for $\varphi(W)$, so there exists a basis $\left(\bar{e}_{1}, \bar{e}_{2}\right)$ for $\varphi(G)$ such that

$$
\begin{equation*}
\varphi(W)=\bar{e}_{1}^{[n-1]} \cdot \bar{e}_{2}^{[n-1]} \cdot\left(x \bar{e}_{1}+\bar{e}_{2}\right)^{\left[k_{n}\right]} \tag{22}
\end{equation*}
$$

for some $x \in[1, n-1]$ with $\operatorname{gcd}(x, n)=1$ and either $x=1$ or $k_{n}=n-1$ (as we have $\left.k_{n} \in[2, n-1]\right)$. Since $\left(\bar{e}_{1}, \bar{e}_{2}\right)$ is a basis and $\operatorname{gcd}(x, n)=1$, any n-term zero-sum sequence with support contained in $\left\{\bar{e}_{1}, \bar{e}_{2}, x \bar{e}_{1}+\bar{e}_{2}\right\}$ must have support of size 1 . Consequently, if we can show that $|\operatorname{Supp}(\varphi(S))|=3$, then any block decomposition $S=W^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \cdot W_{2 m-2+k_{m}}^{\prime}$ will have $\varphi\left(W_{i}^{\prime}\right) \in\left\{\bar{e}_{1}^{[n]}, e_{2}^{[n]},\left(x \bar{e}_{1}+\bar{e}_{2}\right)^{[n]}\right\}$ for all $i \in\left[1,2 m-2+k_{m}\right]$. Moreover, if $k_{n}=n-1$, then Conjecture 1.1 must hold for $\varphi\left(W^{\prime}\right)$ with $\operatorname{Supp}\left(\varphi\left(W^{\prime}\right)\right) \subseteq\left\{\bar{e}_{1}, \bar{e}_{2}, x \bar{e}_{1}+\bar{e}_{2}\right\}$, with each term having multiplicity $n-1$, which forces $\varphi\left(W^{\prime}\right)=\varphi(W)=\bar{e}_{1}^{[n-1]} \cdot \bar{e}_{2}^{[n-1]} \cdot\left(x \bar{e}_{1}+\bar{e}_{2}\right)^{[n-1]}$, while for $k_{n} \leq n-2$ and $x=1$, Conjecture 1.1 must hold for $\varphi\left(W^{\prime}\right)$ with $\operatorname{Supp}\left(\varphi\left(W^{\prime}\right)\right) \subseteq\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{1}+\bar{e}_{2}\right\}$, $\bar{e}_{1}+\left(\bar{e}_{1}+\bar{e}_{2}\right) \neq \bar{e}_{2}$ and $\bar{e}_{2}+\left(\bar{e}_{1}+\bar{e}_{2}\right) \neq \bar{e}_{1}$ (as $n \geq 3$), ensuring that $\varphi\left(W^{\prime}\right)=\varphi(W)=$ $\bar{e}_{1}^{[n-1]} \cdot \bar{e}_{2}^{[n-1]} \cdot\left(x \bar{e}_{1}+\bar{e}_{2}\right)^{\left[k_{n}\right]}$. In both cases, the claim would be complete. Thus it suffices to show $|\operatorname{Supp}(\varphi(S))|=3$. Assume by contradiction that $|\operatorname{Supp}(\varphi(S))|>3$, meaning there is some $g \in \operatorname{Supp}\left(S \cdot W_{0}^{[-1]}\right)$ with $\varphi(g) \notin\left\{\bar{e}_{1}, \bar{e}_{2}, x \bar{e}_{1}+\bar{e}_{2}\right\}=\operatorname{Supp}(\varphi(W))$, and w.l.o.g. $g \in \operatorname{Supp}\left(W_{1}\right)$.

Suppose there were two distinct elements from $\operatorname{Supp}\left(\varphi\left(W \cdot W_{1}\right)\right)$ each with multiplicity at least n in $\varphi\left(W \cdot W_{1}\right)$. Then it would be possible to re-factorize $W \cdot W_{1}=W^{\prime} \cdot W_{1}^{\prime}$ with $\left|W_{1}^{\prime}\right|=\left|W_{1}\right|=n$, with $\varphi\left(W_{1}^{\prime}\right)$ a zero-sum sequence having support of size 1 , and with W^{\prime} containing a zero-sum subsequence of length n and support 1 . But then $S=W^{\prime} \cdot W_{1}^{\prime} \cdot W_{2} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ would be a
block decomposition with $0 \in \Sigma_{\leq n}\left(\varphi\left(W^{\prime}\right)\right)$, contrary to Claim A. So we conclude there can be at most one term from $\varphi\left(W \cdot W_{1}\right)$ with multiplicity at least n.

Suppose $\mathrm{v}_{\varphi(g)}\left(\varphi\left(W \cdot W_{1}\right)\right) \geq n-1$. Since $\varphi(g) \notin \operatorname{Supp}(\varphi(W))$, this ensures $\varphi(g)$ has multiplicity at least $n-1$ in the n-term zero-sum sequence $\varphi\left(W_{1}\right)$, which is only possible if $\varphi\left(W_{1}\right)=\varphi(g)^{[n]}$. In such case, all terms in $\varphi\left(W \cdot W_{1} \cdot g^{[-1]}\right)$ have multiplicity at most $n-1$. Since we have $\left|W \cdot W_{1} \cdot g^{[-1]}\right|=3 n-3+k_{n} \geq 3 n-1 \geq \mathbf{s}_{\leq n}(\varphi(G))$, it follows that there is a nontrivial subsequence $W_{1}^{\prime} \mid W \cdot W_{1} \cdot g^{[-1]}$ with $\varphi\left(W_{1}^{\prime}\right)$ a zero-sum sequence of length at most n. Setting $W^{\prime}=W \cdot W_{1} \cdot\left(W_{1}^{\prime}\right)^{[-1]}$, it follows that $S=W^{\prime} \cdot W_{1}^{\prime} \cdot W_{2} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a block decomposition with $\left|\operatorname{Supp}\left(\varphi\left(W^{\prime} \cdot W_{1}^{\prime}\right)\right)\right|=\left|\operatorname{Supp}\left(\varphi\left(W \cdot W_{1}\right)\right)\right|=4$ and $\left|\operatorname{Supp}\left(\varphi\left(W_{1}^{\prime}\right)\right)\right|>1$ (as $W_{1}^{\prime} \mid W \cdot W_{1} \cdot g^{[-1]}$ with all terms of $\varphi\left(W \cdot W_{1} \cdot g^{[-1]}\right)$ having multiplicity at most $n-1$). Replacing the initial block decomposition by $S=W^{\prime} \cdot W_{1}^{\prime} \cdot W_{2} \cdot \ldots \cdot W_{2 m-2+k_{m}}^{\prime}$ and repeating all arguments from the start (including possibly redefining the elements \bar{e}_{1}, \bar{e}_{2} and $x \bar{e}_{1}+\bar{e}_{2}$), we see that we can w.l.o.g. assume there is some $g \in \operatorname{Supp}\left(W_{1}\right)$ with

$$
\varphi(g) \notin \operatorname{Supp}(\varphi(W))=\left\{\bar{e}_{1}, \bar{e}_{2}, x \bar{e}_{1}+\bar{e}_{2}\right\} \quad \text { and } \quad \mathrm{v}_{\varphi(g)}\left(\varphi\left(W \cdot W_{1}\right)\right) \leq n-2 .
$$

Let $g_{1}, g_{2} \in \operatorname{Supp}(W)$ be elements with $\varphi\left(g_{1}\right)=\bar{e}_{1}$ and $\varphi\left(g_{2}\right)=\bar{e}_{2}$. Now we see that $W \cdot W_{1} \cdot g_{1}^{[-1]} \cdot g_{2}^{[-1]} \cdot g^{[-1]}$ is a sequence of length $3 n-5+k_{n} \geq 3 n-3$. As a result, if $\varphi\left(W \cdot W_{1} \cdot g_{1}^{[-1]} \cdot g_{2}^{[-1]} \cdot g^{[-1]}\right)$ does not contain a zero-sum subsequence of length at most n, then the established case of Conjecture [1.14 implies that $\operatorname{Supp}\left(\varphi\left(W \cdot W_{1} \cdot g_{1}^{[-1]} \cdot g_{2}^{[-1]} \cdot g^{[-1]}\right)\right)=3$ with each of these three terms occurring with multiplicity $n-1$ in $\varphi\left(W \cdot W_{1} \cdot g_{1}^{[-1]} \cdot g_{2}^{[-1]} \cdot g^{[-1]}\right)$. However, since $n \geq 3$, (221) ensures that $\bar{e}_{1}, \bar{e}_{2} \in \operatorname{Supp}\left(\varphi\left(W \cdot W_{1} \cdot g_{1}^{[-1]} \cdot g_{2}^{[-1]} \cdot g^{[-1]}\right)\right)$, meaning \bar{e}_{1} and \bar{e}_{2} each have multiplicity $n-1$ in $\varphi\left(W \cdot W_{1} \cdot g_{1}^{[-1]} \cdot g_{2}^{[-1]} \cdot g^{[-1]}\right)$, whence $\mathrm{v}_{\bar{e}_{1}}\left(\varphi\left(W \cdot W_{1}\right)\right) \geq n$ and $\mathrm{v}_{\bar{e}_{2}}\left(\varphi\left(W \cdot W_{1}\right)\right) \geq n$ (since $\varphi\left(g_{1}\right)=\bar{e}_{1}$ and $\varphi\left(g_{2}\right)=\bar{e}_{2}$), contradicting that we showed earlier that at most one term of $\varphi\left(W \cdot W_{1}\right)$ can have multiplicity at least n. Therefore we instead conclude that there is some subsequence $W_{1}^{\prime} \mid W \cdot W_{1} \cdot g_{1}^{[-1]} \cdot g_{2}^{[-1]} \cdot g^{[-1]}$ with $\varphi\left(W_{1}^{\prime}\right)$ a length n zero-sum (in view of Claim A). Setting $W^{\prime}=W \cdot W_{1} \cdot\left(W_{1}^{\prime}\right)^{[-1]}$, we find that $S=W^{\prime} \cdot W_{1}^{\prime} \cdot W_{2} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is a block decomposition with $g, g_{1}, g_{2} \in \operatorname{Supp}\left(W^{\prime}\right)$ and $\varphi\left(g_{1}\right)=\bar{e}_{1}, \varphi\left(g_{2}\right)=\bar{e}_{2}$ and $\varphi(g) \notin\left\{\bar{e}_{1}, \bar{e}_{2}, x \bar{e}_{1}+\bar{e}_{2}\right\}$.

Applying our initial argument in Claim C using this new block decomposition, we immediately obtain a contradiction unless Conjecture 1.1 holds for $\varphi\left(W^{\prime}\right)$ with $\operatorname{Supp}\left(\varphi\left(W^{\prime}\right)\right)=\left\{\bar{e}_{1}, \bar{e}_{2}, \varphi(g)\right\}$. If $k_{n}=n-1$, this forces each of the terms \bar{e}_{1}, \bar{e}_{2} and $\varphi(g)$ to have multiplicity $n-1$ in $\varphi\left(W^{\prime}\right)$, contradicting that $W^{\prime} \mid W \cdot W_{1}$ with the multiplicity of $\varphi(g)$ in $\varphi\left(W \cdot W_{1}\right)$ at most $n-2$ (as shown above). Therefore we must have $k_{n} \leq n-2$, in which case $x=1$, and then, as $\varphi(g)$ has multiplicity at most $n-2$, the only way Conjecture 1.1 can hold for $\varphi\left(W^{\prime}\right)$ is if it does so with basis (\bar{e}_{1}, \bar{e}_{2}) and $\varphi(g)=\bar{e}_{1}+\bar{e}_{2}$, contradicting that $\varphi(g) \notin\left\{\bar{e}_{1}, \bar{e}_{2}, x \bar{e}_{1}+\bar{e}_{2}\right\}=\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{1}+\bar{e}_{2}\right\}$. This completes Claim C.

We define a term $g \in \operatorname{Supp}(S)$ to be good if $g, h \in \operatorname{Supp}(S)$ with $\varphi(g)=\varphi(h)$ implies $g=h$. A term $g \in \operatorname{Supp}(\varphi(S))$ is good if $\operatorname{Supp}(S)$ contains exactly one element from $\varphi^{-1}(g)$. Then, for $g \in \operatorname{Supp}(S)$, we find that $\varphi(g)$ is good if and only if g is good.

Let $\left(\bar{e}_{1}, \bar{e}_{2}\right)$ be an arbitrary basis for $\operatorname{ker} \varphi$ for which Claim C holds with

$$
\begin{equation*}
\operatorname{Supp}(\varphi(S))=\left\{\bar{e}_{1}, \bar{e}_{2}, x \bar{e}_{1}+\bar{e}_{2}\right\}, \tag{23}
\end{equation*}
$$

where $x \in[1, n-1]$ with $\operatorname{gcd}(x, n)=1$ and either $x=1$ or $k_{n}=n-1$. Let $e_{1}, e_{2} \in G$ be, for the moment, arbitrary representatives for \bar{e}_{1} and \bar{e}_{2}, so $\varphi\left(e_{1}\right)=\bar{e}_{1}, \varphi\left(e_{2}\right)=\bar{e}_{2}$ and $\varphi\left(x e_{1}+e_{2}\right)=x \bar{e}_{1}+\bar{e}_{2}$. We divide the remainder of the proof into two main cases. We remark that the cases $k_{m} \in[1, m-2]$ could be handled by the methods of either CASE 1 or 2 , but there is some simplification to the arguments by including them in CASE 2.

CASE 1: $k_{m}=m-1$.
We begin with the following claim.

Claim D.1. All terms $g \in \operatorname{Supp}(S)$ are good.

Proof. Let $S=W \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ be an arbitrary block decomposition. In view of Claim C, let $g_{1}, g_{2}, g_{3} \in \operatorname{Supp}(W)$ be arbitrary with $\varphi\left(g_{1}\right)=\bar{e}_{1}, \varphi\left(g_{2}\right)=\bar{e}_{2}$ and $\varphi\left(g_{3}\right)=x \bar{e}_{1}+\bar{e}_{2}$. Let $S_{\sigma}=\sigma\left(W_{1}\right) \cdot \ldots \cdot \sigma\left(W_{2 m-2+k_{m}}\right)$ be the associated sequence, which satisfies Conjecture 1.1 by Claim B. If $h \in \operatorname{Supp}\left(S \cdot W^{[-1]}\right)$, say $h \in \operatorname{Supp}\left(W_{j}\right)$, then $\varphi(h)=\varphi\left(g_{k}\right)$ for some $k \in[1,3]$ by Claim C. Setting $W^{\prime}=W \cdot g_{k}^{[-1]} \cdot h, W_{j}^{\prime}=W_{j} \cdot h^{[-1]} \cdot g_{k}$ and $W_{i}^{\prime}=W_{i}$ for all $i \neq j$, we obtain a new block decomposition $S=W^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \cdot W_{2 m-2+k_{m}}^{\prime}$ with associated sequence $S_{\sigma}^{\prime}=\sigma\left(W_{1}^{\prime}\right) \cdot \ldots \cdot \sigma\left(W_{2 m-2+k_{m}}^{\prime}\right)$ also satisfying Conjecture 1.1 by Claim B. Since $k_{m}=m-1 \geq 1$, we can then apply Lemma 2.1 to conclude that $S_{\sigma}^{\prime}=S_{\sigma}$ and $\sigma\left(W_{j}^{\prime}\right)=\sigma\left(W_{j}\right)$. Since $\sigma\left(W_{j}^{\prime}\right)=\sigma\left(W_{j}\right)-h+g_{k}$, this forces $g_{k}=h$. Ranging over all $h \in \operatorname{Supp}\left(S \cdot W^{[-1]}\right)$ and $g_{k} \in \operatorname{Supp}(W)$ with $\varphi\left(g_{k}\right)=\varphi(h)$ now shows that $\varphi(h)$ is good.

In summary, this argument shows that all terms occurring in $\varphi\left(S \cdot W^{[-1]}\right)$ are good. Consequently, since Claim C ensures that $|\operatorname{Supp}(\varphi(S))|=3$, the only way Claim D can fail is if $\left|\operatorname{Supp}\left(\varphi\left(S \cdot W^{[-1]}\right)\right)\right| \leq 2$ with all terms in $\operatorname{Supp}\left(\varphi\left(S \cdot W^{[-1]}\right)\right)$ good. In view of Claim C, each $\varphi\left(W_{i}\right)$ with $i \in\left[1,2 m-2+k_{m}\right]$ consists of a single term from $\left\{\bar{e}_{1}, \bar{e}_{2}, x \bar{e}_{1}+\bar{e}_{2}\right\}$ repeated n times. As a result, if $\left|\operatorname{Supp}\left(\varphi\left(S \cdot W^{[-1]}\right)\right)\right| \leq 2$, then the Pigeonhole Principle ensures that, among the terms from the $2 m-2+k_{m}=3 m-3$ blocks W_{i} with $i \in\left[1,2 m-2+k_{m}\right]$, at least $\left\lceil\frac{3 m-3}{2}\right\rceil \geq m$ of these blocks $\varphi\left(W_{i}\right)$ must have support equal to the same element, which is then good, ensuring that there is only a single distinct term among these blocks W_{i}. In such case, S has a term with multiplicity at least $m n$, contradicting that $0 \notin \Sigma_{\leq 2 m n-1-k}(S)$. Therefore, we instead conclude that $\left|\operatorname{Supp}\left(\varphi\left(S \cdot W^{[-1]}\right)\right)\right|=3$, meaning all $g \in \operatorname{Supp}(S)$ are good as explained above.

Since $k_{m}=m-1$ and $k=k_{m} n+k_{n} \in[2, m n-2]$, we have $k_{n} \neq n-1$, meaning $k_{n} \in[2, n-2]$ with $n \geq 4$. This ensures that $x=1$ in Claim C. In view of Claim D.1,

$$
\begin{equation*}
\operatorname{Supp}(S)=\left\{e_{1}, e_{2}, e_{1}+e_{2}+\alpha\right\} \tag{24}
\end{equation*}
$$

for some $e_{1}, e_{2} \in G$ and $\alpha \in \operatorname{ker} \varphi$ with $\varphi\left(e_{1}\right)=\bar{e}_{1}, \varphi\left(e_{2}\right)=\bar{e}_{2}$ and $\varphi\left(e_{1}+e_{2}+\alpha\right)=\bar{e}_{1}+\bar{e}_{2}$. Let $S=W \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ be an arbitrary block decomposition. Then Claim C implies that

$$
W=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(e_{1}+e_{2}+\alpha\right)^{\left[k_{n}\right]}
$$

with $k_{n} \in[2, n-2]$. Moreover, we can partition $\left[1,2 m-2+k_{m}\right]=I_{1} \cup I_{2} \cup I_{3}$ with I_{j} consisting of all indices $i \in\left[1,2 m-2+k_{m}\right]$ such that $W_{i}=e_{j}^{[n]}($ for $j \in[0,1])$ or such that $W_{i}=\left(e_{1}+e_{2}+\alpha\right)^{[n]}$ (for $j=3$). If $I_{j}=\emptyset$ for some $j \in[1,3]$, then, since $2 m-2+k_{m} \geq 2 m-1$ (as $k_{m}=m-1 \geq 1$), the Pigeonhole Principle ensures that $\left|I_{j^{\prime}}\right| \geq m$ for some $j^{\prime} \in[1,3] \backslash\{j\}$. In such case, S has a term with multiplicity at least $m n$, contradicting that $0 \notin \Sigma_{\leq m n}(S)$ by hypothesis. Therefore we may assume each I_{j} for $j \in[1,3]$ is nonempty.

Since $I_{3} \neq \emptyset$, let $j \in I_{3}$. Set $W^{\prime}=W \cdot e_{1}^{[-1]} \cdot e_{2}^{[-1]} \cdot\left(e_{1}+e_{2}+\alpha\right), W_{j}^{\prime}=W_{j} \cdot\left(e_{1}+e_{2}+\alpha\right)^{[-1]} \cdot e_{1} \cdot e_{2}$, and $W_{i}^{\prime}=W_{i}$ for all $i \neq j$. Since $\left|W^{\prime}\right|=|W|-1=2 n-3+k_{n} \geq n-1+2 k_{n}$ (in view of $k_{n} \in[2, n-2]$), we see that $S=W^{\prime} \cdot W_{1}^{\prime} \cdot \ldots \cdot W_{2 m-2+k_{m}}^{\prime}$ is a weak block decomposition with associated sequence $S_{\sigma}^{\prime}=\sigma\left(W_{1}^{\prime}\right) \cdot \ldots \cdot \sigma\left(W_{2 m-2+k_{m}}^{\prime}\right)$. Since Conjecture 1.1 is known to always hold for $k_{m}=m-1$, it follows in view of Claim B that Conjecture 1.1 holds for S_{σ}^{\prime}. As a result, since the sequence S_{σ}^{\prime} is obtained from S_{σ} by replacing the term $\sigma\left(W_{j}\right)$ by $\sigma\left(W_{j}^{\prime}\right)=\sigma\left(W_{j}\right)-\alpha$, and since Conjecture 1.1 holds for S_{σ} by Claim B, we can apply Lemma 2.1 (as $k_{m}=m-1 \geq 1$) to conclude $\alpha=0$. But now $\operatorname{Supp}(S) \subseteq\left\{e_{1}, e_{2}, e_{1}+e_{2}\right\}$ by (24), so applying Lemma 2.2 yields the desired structure for S, completing CASE 1 .

CASE 2: $k_{m} \in[0, m-2]$.
Let $S=W \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ be an arbitrary block decomposition with associated sequence S_{σ}. Then Claim C implies that

$$
\begin{equation*}
\varphi(W)=\bar{e}_{1}^{[n-1]} \cdot \bar{e}_{2}^{[n-1]} \cdot\left(x \bar{e}_{1}+\bar{e}_{2}\right)^{\left[k_{n}\right]} \tag{25}
\end{equation*}
$$

with $k_{n} \in[2, n-1]$, with $x \in[1, n-1]$ and $\operatorname{gcd}(x, n)=1$, and with either $x=1$ or $k_{n}=n-1$. Since $n \geq 3$ (as noted at the start of the proof), $x=n-1$ is only possible if $k_{n}=n-1$, in which case Claim C also holds replacing the basis $\left(f_{1}, f_{2}\right)$ by $\left(f_{1}, x f_{1}+f_{2}\right)=\left(f_{1},-f_{1}+f_{2}\right)$ with $f_{2}=f_{1}+\left(x f_{1}+f_{2}\right)$. In such case, by using this alternative basis in Claim C, we obtain $x=1<n-1$. This allows us to w.l.o.g. assume $x \in[1, n-2]$ with $\operatorname{gcd}(x, n)=1$.

If $x=1$, then (25) and $k_{n} \in[2, n-1]$ ensures that there are sequences $U_{0} \mid W$ and $V_{0} \mid W$ with

$$
\varphi\left(U_{0}\right)=\bar{e}_{1}^{\left[n-k_{n}\right]} \cdot e_{2}^{\left[n-k_{n}\right]} \cdot\left(\bar{e}_{1}+\bar{e}_{2}\right)^{\left[k_{n}\right]} \quad \text { and } \quad \varphi\left(V_{0}\right)=\bar{e}_{1}^{\left[n-k_{n}+1\right]} \cdot \bar{e}_{2}^{\left[n-k_{n}+1\right]} \cdot\left(\bar{e}_{1}+\bar{e}_{2}\right)^{\left[k_{n}-1\right]} .
$$

Since $k_{n} \in[2, n-1]$, we find that

$$
\begin{align*}
& \operatorname{Supp}\left(\varphi\left(U_{0}\right)\right)=\operatorname{Supp}\left(\varphi\left(V_{0}\right)\right)=\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{1}+\bar{e}_{2}\right\}, \tag{26}\\
& \bar{e}_{1}, \bar{e}_{2} \in \operatorname{Supp}\left(\varphi\left(W \cdot U_{0}^{[-1]}\right)\right) \quad \text { and } \quad \bar{e}_{1}+\bar{e}_{2} \in \operatorname{Supp}\left(\varphi\left(W \cdot V_{0}^{[-1]}\right)\right) . \tag{27}
\end{align*}
$$

On the other hand, if $x \neq 1$, then $x \in[2, n-2]$ with $\operatorname{gcd}(x, n)=1, n \geq 5$ and $k_{n}=n-1$. In such case, let $x^{*} \in[2, n-2]$ be the multiplicative inverse of $-x$, so

$$
x x^{*} \equiv-1 \quad \bmod n .
$$

In this case, in view of (25) and $n \geq 5$, there is a sequence $W_{0} \mid W$ with

$$
\varphi\left(W_{0}\right)=\bar{e}_{1} \cdot \bar{e}_{2}^{\left[n-x^{*}\right]} \cdot\left(x \bar{e}_{1}+\bar{e}_{2}\right)^{\left[x^{*}\right]} .
$$

In view of $x^{*} \in[2, n-2]$ and $k_{n}=n-1$, we have

$$
\begin{align*}
& \operatorname{Supp}\left(\varphi\left(W_{0}\right)\right)=\operatorname{Supp}\left(\varphi\left(W \cdot W_{0}^{[-1]}\right)\right)=\left\{\bar{e}_{1}, \bar{e}_{2}, x \bar{e}_{1}+\bar{e}_{2}\right\} \quad \text { and } \tag{28}\\
& \vee_{\bar{e}_{1}}\left(\varphi\left(W \cdot W_{0}^{[-1]}\right)\right)=n-2 \geq x \tag{29}
\end{align*}
$$

Since $\left|W_{0}\right|=n+1,\left|U_{0}\right|=2 n-k_{n}$ and $\left|V_{0}\right|=2 n-k_{n}+1$ are all at most $3 n-1-k_{n}$ (in view of $n \geq 2$ and $k_{n} \leq n-1 \leq 2 n-2$), it follows that $S=\left(W \cdot W_{0}^{[-1]}\right) \cdot W_{0} \cdot W_{1} \ldots \cdot W_{2 m-2+k_{m}}$, $S=\left(W \cdot U_{0}^{[-1]}\right) \cdot U_{0} \cdot W_{1} \ldots \cdot W_{2 m-2+k_{m}}$ and $S=\left(W \cdot V_{0}^{[-1]}\right) \cdot V_{0} \cdot W_{1} \ldots \cdot W_{2 m-2+k_{m}}$ are each augmented block decompositions of S (when they are defined), with respective associated sequences $\sigma\left(W_{0}\right) \cdot S_{\sigma}, \sigma\left(U_{0}\right) \cdot S_{\sigma}$, and $\sigma\left(V_{0}\right) \cdot S_{\sigma}$. In view of Claim B and the case hypothesis $k_{m} \in[0, m-2]$, Conjecture 1.1 holds for all of these associated sequences.

We continue with the following claim.
Claim D.2. All terms $g \in \operatorname{Supp}(S)$ are good.
Proof. Suppose $x \neq 1$. Consider the augmented block decomposition $S=\left(W \cdot W_{0}^{[-1]}\right) \cdot W_{0} \cdot$ $W_{1} \ldots \cdot W_{2 m-2+k_{m}}$. Then (28) ensures that there are $g_{1}, g_{2}, g_{2} \in \operatorname{Supp}\left(W \cdot W_{0}^{[-1]}\right)$ with $\varphi\left(g_{1}\right)=\bar{e}_{1}$, $\varphi\left(g_{2}\right)=\bar{e}_{2}$ and $\varphi\left(g_{3}\right)=x \bar{e}_{1}+\bar{e}_{2}$. Taking an arbitrary $g \in \operatorname{Supp}\left(W_{0} \cdot \ldots \cdot W_{2 m-2+k_{m}}\right)$ and exchanging g with g_{j}, where g_{j} with $j \in[1,3]$ is the element with $\varphi\left(g_{j}\right)=\varphi(g)$, results in a new augmented block decomposition. Applying Lemma 2.1, we find that the associated sequence for the new block decomposition must equal that of the original one, forcing $g=g_{j}$. Ranging over all possible $g_{j} \in \operatorname{Supp}\left(W \cdot W_{0}^{[-1]}\right)$ and $g \in \operatorname{Supp}\left(W_{0} \cdot \ldots \cdot W_{2 m-2+k_{m}}\right)$ with $\varphi(g)=\varphi\left(g_{j}\right)$, it follows that g is good. This shows that all terms from $W_{0} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ are good, and in view of (28), each possible term \bar{e}_{1}, \bar{e}_{2} and $x \bar{e}_{1}+\bar{e}_{2}$ occurs in $\varphi\left(W_{0} \cdot \ldots \cdot W_{2 m-2+k_{m}}\right)$, ensuring that every $g \in \operatorname{Supp}(S)$ is good.

Next suppose $x=1$. Repeating the above argument using the augmented block decomposition $S=\left(W \cdot U_{0}^{[-1]}\right) \cdot U_{0} \cdot W_{1} \ldots \cdot W_{2 m-2+k_{m}}$ in place of $S=\left(W \cdot W_{0}^{[-1]}\right) \cdot W_{0} \cdot W_{1} \ldots \cdot W_{2 m-2+k_{m}}$, and using (27) and (26) in place of (28) shows that \bar{e}_{1} and \bar{e}_{2} are both good. Repeating the above argument using the augmented block decomposition $S=\left(W \cdot V_{0}^{[-1]}\right) \cdot V_{0} \cdot W_{1} \ldots \cdot W_{2 m-2+k_{m}}$ in place of $S=\left(W \cdot W_{0}^{[-1]}\right) \cdot W_{0} \cdot W_{1} \ldots \cdot W_{2 m-2+k_{m}}$, and using (27) and (261) in place of (28) shows
that $\bar{e}_{1}+\bar{e}_{2}$ is good. As $\operatorname{Supp}(\varphi(S))=\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{1}+\bar{e}_{2}\right\}$, this ensures that all terms $g \in \operatorname{Supp}(S)$ are good.

In view of Claim D.2, there are $e_{1}, e_{2} \in G$ and $\alpha \in \operatorname{ker} \varphi$ such that

$$
\operatorname{Supp}(S)=\left\{e_{1}, e_{2}, x e_{1}+e_{2}+\alpha\right\}
$$

with $\varphi\left(e_{1}\right)=\bar{e}_{1}, \varphi\left(e_{2}\right)=\bar{e}_{2}$ and $\varphi\left(e_{1}+e_{2}+\alpha\right)=x \bar{e}_{1}+\bar{e}_{2}$.
Suppose $x \neq 1$. Then (28) and (29) ensure that there is a subsequence $T \mid W \cdot W_{0}^{[-1]}$ with $T=e_{1}^{[x]} \cdot e_{2}$. In view of (288), we have $x e_{2}+e_{3}+\alpha \in \operatorname{Supp}\left(W_{0}\right)$, so set $W_{0}^{\prime}=W_{0} \cdot\left(x e_{1}+e_{2}+\alpha\right)^{[-1]} \cdot T$. Since $\left|W_{0}^{\prime}\right|=\left|W_{0}\right|+x=n+1+x \leq 2 n=3 n-1-k_{n}$, it follows that $\left(W \cdot\left(W_{0}^{\prime}\right)^{[-1]}\right) \cdot W_{0}^{\prime} \cdot$ $W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is an augmented block decomposition with associated sequence satisfying Conjecture 1.1 by Claim B. Applying Lemma [2.1, we find that the associated sequence for the new block decomposition must equal that of the original one, which is only possible if $\alpha=0$. We now have $\operatorname{Supp}(S)=\left\{e_{1}, e_{2}, x e_{1}+e_{2}+\alpha\right\}=\left\{e_{1}, e_{2}, x e_{1}+e_{2}\right\}$, so applying Lemma 2.2 yields the desired structure for S.

Next Suppose $x=1$. Then (27) ensures that there is a subsequence $T \mid W \cdot U_{0}^{[-1]}$ with $T=$ $e_{1} \cdot e_{2}$. In view of (26), we have $e_{1}+e_{2}+\alpha \in \operatorname{Supp}\left(U_{0}\right)$, so set $U_{0}^{\prime}=U_{0} \cdot\left(e_{1}+e_{2}+\alpha\right)^{[-1]} \cdot T$. Since $\left|U_{0}^{\prime}\right|=\left|U_{0}\right|+1=2 n-k_{n}+1 \leq 3 n-1-k_{n}$, it follows that $\left(W \cdot\left(U_{0}^{\prime}\right)^{[-1]}\right) \cdot U_{0}^{\prime} \cdot W_{1} \cdot \ldots \cdot W_{2 m-2+k_{m}}$ is an augmented block decomposition with associated sequence satisfying Conjecture 1.1 by Claim B. Applying Lemma [2.1, we find that the associated sequence for the new block decomposition must equal that of the original one, which is only possible if $\alpha=0$. As before, we now have $\operatorname{Supp}(S)=\left\{e_{1}, e_{2}, e_{1}+e_{2}+\alpha\right\}=\left\{e_{1}, e_{2}, e_{1}+e_{2}\right\}$, so applying Lemma 2.2 yields the desired structure for S, which completes CASE 2 and the proof.

Proof of Theorem 1.2. Theorem 1.2 follows directly from Propositions 3.1 and 3.2
We conclude the paper by giving the short proofs of Corollaries 1.3, 1.4 and 1.5,
Proof of Corollary 1.3. It suffices in view of Theorem 1.2 to know Conjecture 1.1 holds for all $k \in[0, p-1]$ in $G=C_{p} \oplus C_{p}$, for $p \in\{2,3,5,7\}$. As noted in the introduction, Conjecture 1.1 is known for $k \leq 1, k=p-1$ and $k \in\left[2, \frac{2 p+1}{3}\right]$ in $C_{p} \oplus C_{p}$ with p prime. Since, $p-2 \leq \frac{2 p+1}{3}$ for $p \leq 7$, this means Conjecture 1.1 is known for all $k \in[0, p-1]$ in $C_{p} \oplus C_{p}$ for $p \leq 7$ prime, as required.

Proof of Corollary 1.4. In view of Corollary 1.3, we can assume $n \geq 11$. As noted in the introduction, Conjecture 1.1 is known for $k \leq \frac{2 n+1}{3}$ in a p-group $C_{n} \oplus C_{n}$ provided $p \nmid k$ and $n \geq 5$. It remains to show Conjecture 1.1 holds for $k=r p$ with $r \in\left[1, \frac{2 n+1}{3 p}\right]$. If $n=p$, there is nothing to show, so we assume $n=p^{s}$ with $s \geq 2$, and proceed by induction on s with the base $s=1$ of the induction complete. We have $r p=k \leq \frac{2 p^{s}+1}{3}$, ensuring that $r \leq \frac{2 p^{s-1}+1}{3}$. Thus, by induction hypothesis, Conjecture 1.1 holds for r in $C_{p^{s-1}} \oplus C_{p^{s-1}}$, while Conjecture 1.1 holds in general for $k_{p}:=0$ in $C_{p} \oplus C_{p}$ (as noted in the introduction). As a result, Theorem 1.2 (applied with
$n=p$ and $m=p^{s-1}$) implies that Conjecture 1.1 holds for $k=r p$ in $C_{p^{s}} \oplus C_{p^{s}}$, completing the induction and the proof.

Proof of Corollary 1.5. Write $n=b d$ with b and d proper nontrivial divisors of n. As noted in the introduction, Conjecture 1.1 holds for $k=d-1$ and for $k=1$ in $C_{d} \oplus C_{d}$; if $b=2$, then Conjecture 1.1 holds for $k=b-2=0$ in $C_{b} \oplus C_{b}$; and if $b \geq 3$, then Conjecture 1.1 holds for $k+1=b-1$ in $C_{b} \oplus C_{b}$. In both of the latter two cases, since $d-1 \geq 1$, applying Theorem 1.2 using $n=d$ and $m=b$ shows that Conjecture 1.1 holds for $k=n-d-1=(b-2) d+(d-1)$ in $C_{b d} \oplus C_{b d}=C_{n} \oplus C_{n}$, and applying Theorem 1.2 using $n=d$ and $m=b$ shows that Conjecture 1.1 holds for $k=n-2 d+1=(b-2) d+1$ in $C_{b d} \oplus C_{b d}=C_{n} \oplus C_{n}$, as desired.

References

[1] P. Baginski, A. Geroldinger, D. J. Grynkiewicz and A. Philipp, Products of two atoms in Krull monoids and arithmetical characterizations of class groups, European J. Combin. 34 (2013), no. 8, 1244-1268.
[2] G. Bhowmik, I. Halupczok, J. C. Schlage-Puchta, The structure of maximal zero-sum free sequences, Acta Arith. 143 (2010), no. 1, 21-50.
[3] G. Cohen and G. Zemor, Subset sums and coding theory, Astérisque 258 (1999) 327-339.
[4] C. Delorme, O. Ordaz and D. Quiroz, Some Remarks on Davenport Constant, Discrete Math. 237 (2001), 119-128.
[5] P. van Emde Boas, A combinatorial problem on finite abelian groups II, Math. Centrum Amsterdam Afd. Zuivere Wisk., 1969(ZW-007):60pp., 1969.
[6] P. van Emde Boas and D. Kruyswijk, A combinatorial problem on finite Abelian groups, Math. Centrum Amsterdam Afd. Zuivere Wisk. 1967 (1967), ZW-009, 27 pp.
[7] M. Freeze and W. Schmid, Remarks on a generalization of the Davenport constant, Discrete Math. 310 (2010), 3373-3389.
[8] W. Gao and A. Geroldinger, On zero-sum sequences in $\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$, Integers 3 (2003), \#A8.
[9] W. Gao and A. Geroldinger, On Long Minimal Zero Sequences in Finite Abelian Groups, Periodica Mathematica Hungarica 38 (1999), 179-211.
[10] W. Gao, A. Geroldinger, D. J. Grynkiewicz, Inverse Zero-Sum Problems III, Acta Arithmetica 141 (2010), no. 3, 103-152.
[11] W. Gao, Y. Li, C. Liu and Y. Qu, Product-one subsequences over subgroups of a finite group, Acta Arithmetica 189 (2019), 209-221.
[12] A. Geroldinger, D. J. Grynkiewicz and W. A Schmid, Zero-sum problems with congruence conditions, Acta Math. Hungar. 131 (2011), no. 4, 323-345.
[13] A. Geroldinger, D. J. Grynkiewicz and P. Yuan, On products of k atoms II, Mosc. J. Comb. Number Theory 5 (2015), no. 3, 3-59.
[14] A. Geroldinger and F. Halter-Koch, Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman and Hall/CRC, 2006.
[15] A. Geroldinger and I. Ruzsa, Combinatorial number theory and additive group theory, Courses and seminars from the DocCourse in Combinatorics and Geometry held in Barcelona, 2008. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2009. xii +330 pp.
[16] A. Geroldinger and W. A. Schmid, A characterization of class groups via sets of lengths, J. Korean Math. Soc. 56 (2019), no. 4, 869-915.
[17] B. Girard, On the existence of zero-sum subsequences of distinct lengths, Rocky Mountain J. Math. 42 (2012), no. 2, 583-596.
[18] D. J. Grynkiewicz, Representing Sequence Subsums as Sumsets of Near Equal Sized Sets, in Combinatorial Number Theory IV, ed. M. Nathanson, Springer (2021), Ch. 11.
[19] D. Grynkiewicz, Structural Additive Theory, Developments in Mathematics 30 (2013), Springer.
[20] D. J. Grynkiewicz, On a conjecture of Hamidoune for subsequence sums, Integers 5(2) (2005), Paper A07, 11p.
[21] D. J. Grynkiewicz, Inverse Zero-Sum Problems III: Addendum, preprint, https://arxiv.org/abs/2107.10619.
[22] D. J. Grynkiewicz and Chao Liu, A Multiplicative Property for Zero-Sums II, preprint.
[23] D. J. Grynkiewicz, Chunlin Wang and Kevin Zhao, The structure of a sequence with prescribed zero-sum subsequences, Integers 20 (2020), Paper No. A3, 31 pp.
[24] J. E. Olson, A combinatorial problem on finite Abelian groups I. J. Number Theory 1 (1969), 8-10.
[25] J. E. Olson, A combinatorial problem on finite Abelian groups II. J. Number Theory 1 (1969), 195-199.
[26] O. Ordaz, A. Philipp, I. Santos and W. A. Schmid, On the Olson and the strong Davenport constants, J. Théor. Nombres Bordeaux 23 (2011), no. 3, 715-750.
[27] J. Peng, Y. Qu and Y. Li, Inverse problems associated with subsequence sums in $C_{p} \oplus C_{p}$, Front. Math. China 15 (2020), no. 5, 985-1000.
[28] C. Reiher, A proof of the theorem according to which every prime number possesses Property B, Ph.D Dissertation, University of Rostock, 2010.
[29] B. Roy and R. Thangadurai, On zero-sum subsequences in a finite abelian p-group of length not exceeding a given number, Journal of Number Theory 191 (2018), 246-257.
[30] W. A. Schmid, Restricted inverse zero-sum problems in groups of rank 2, Quarterly journal of mathematics 63 (2012), no. 2, 477-487.
[31] W. A. Schmid, Inverse zero-sum problems II, Acta Arith. 143 (2010), no. 4, 333-343.
[32] C. Wang and K. Zhao, On zero-sum subsequences of length not exceeding a given number, J. Number Theory 176 (2017), 365-374

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA
Email address: diambri@hotmail.com
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA
Email address: chaoliuac@gmail.com

[^0]: 2010 Mathematics Subject Classification. 11B75.
 Key words and phrases. Zero-Sum, Davenport Constant, Short Zero-Sum, Sequence Subsum.

