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A MULTIPLICATIVE PROPERTY FOR ZERO-SUMS I

DAVID J. GRYNKIEWICZ AND CHAO LIU

Abstract. Let G = (Z/nZ)×(Z/nZ) and let k ∈ [0, n−1]. We study the structure of sequences

of terms from G with maximal length |S| = 2n− 2+ k that fail to contain a nontrivial zero-sum

subsequence of length at most 2n−1−k. For k ≤ 1, this is the inverse question for the Davenport

Constant. For k = n − 1, this is the inverse question for the η(G) invariant concerning short

zero-sum subsequences. The structure in both these cases (known respectively as Property

B and Property C) was established in a two-step process: first verifying the multiplicative

property that, if the structural description holds when n = n1 and n = n2, then it holds when

n = n1n2, and then resolving the case n prime separately. When n is prime, the structural

characterization for k ∈ [2, 2n+1
3

] was recently established, showing S must have the form

S = e
[n−1]
1 · e

[n−1]
2 · (e1 + e2)

[k] for some basis (e1, e2) for G. It was conjectured that this

also holds for k ∈ [2, n − 2] (when n is prime). In this paper, we extend this conjecture

by dropping the restriction that n be prime and establish the following multiplicative result.

Suppose k = kmn + kn with km ∈ [0, m − 1] and kn ∈ [0, n − 1]. If the conjectured structure

holds for km in (Z/mZ) × (Z/mZ) and for kn in (Z/nZ) × (Z/nZ), then it holds for k in

(Z/mnZ)× (Z/mnZ). This reduces the full characterization question for n and k to the prime

case. Combined with known results, this unconditionally establishes the structure for extremal

sequences in G = (Z/nZ)× (Z/nZ) in many cases, including when n is only divisible by primes

at most 7, when n ≥ 2 is a prime power and k ≤ 2n+1
3

, or when n is composite and k = n−d−1

or n− 2d + 1 for a proper, nontrivial divisor d | n.

1. Introduction and Preliminaries

Regarding combinatorial notation for sequences and subsums, we utilize the standardized

system surrounding multiplicative strings as outlined in the references [15] [14] [19]. For the

reader new to this notational system, we begin with a self-contained review.

Notation. All intervals will be discrete, so for x, y ∈ Z, we have [x, y] = {z ∈ Z : x ≤ z ≤ y}.

More generally, if G is an abelian group, g ∈ G, and x, y ∈ Z, then

[x, y]g = {xg, (x + 1)g, . . . , yg}.

For G = Cn ⊕ Cn a (ordered) basis for G is a pair (e1, e2) of elements e1, e2 ∈ G such that

G = 〈e1〉⊕〈e2〉 = Cn⊕Cn. For subsets A1, . . . , Ak ⊆ G, their sumset is defined as A1+. . .+Ak =

{a1 + . . . + ak : ai ∈ Ai for i ∈ [1, k]}.
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Let G be an abelian group. In the tradition of Combinatorial Number Theory, a sequence

of terms from G is a finite, unordered string of elements from G. We let F(G) denote the

free abelian monoid with basis G, which consists of all (finite and unordered) sequences S of

terms from G written as multiplicative strings using the boldsymbol · . This means a sequence

S ∈ F(G) has the form

S = g1 · . . . · gℓ

with g1, . . . , gℓ ∈ G the terms in S. Then

vg(S) = |{i ∈ [1, ℓ] : gi = g}|

denotes the multiplicity of the terms g in S, allowing us to represent a sequence S as

S =
∏•

g∈G
g[vg(S)],

where g[n] = g · . . . · g︸ ︷︷ ︸n
denotes a sequence consisting of the term g ∈ G repeated n ≥ 0 times.

The maximum multiplicity of a term of S is the height of the sequence, denoted

h(S) = max{vg(S) : g ∈ G}.

The support of the sequence S is the subset of all elements of G that are contained in S, that

is, that occur with positive multiplicity in S, which is denoted

Supp(S) = {g ∈ G : vg(S) > 0}.

The length of the sequence S is

|S| = ℓ =
∑

g∈G

vg(S).

A sequence T ∈ F(G) with vg(T ) ≤ vg(S) for all g ∈ G is called a subsequence of S, denoted

T | S, and in such case, S ·T [−1] = T [−1]
·S denotes the subsequence of S obtained by removing

the terms of T from S, so vg(S · T [−1]) = vg(S)− vg(T ) for all g ∈ G.

Since the terms of S lie in an abelian group, we have the following notation regarding subsums

of terms from S. We let

σ(S) = g1 + . . .+ gℓ =
∑

g∈G

vg(S)g

denote the sum of the terms of S and call S a zero-sum sequence when σ(S) = 0. A minimal

zero-sum sequence is a zero-sum sequence that cannot have its terms partitioned into two

proper, nontrivial zero-sum subsequences. For n ≥ 0, let

Σn(S) = {σ(T ) : T | S, |T | = n}, Σ≤n(S) = {σ(T ) : T | S, 1 ≤ |T | ≤ n}, and

Σ(S) = {σ(T ) : T | S, |T | ≥ 1}

denote the variously restricted collections of subsums of S. The sequence S is zero-sum free

if 0 /∈ Σ(S). Finally, if ϕ : G → G′ is a map, then

ϕ(S) = ϕ(g1) · . . . · ϕ(gℓ) ∈ F(G′)
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denotes the sequence of terms from G′ obtained by applying ϕ to each term from S.

Background. Let G be a finite abelian group. A classic topic in Combinatorial Number Theory

is the study of conditions on sequences that ensure the existence of zero-sum subsequences with

prescribed properties. Apart from the intrinsic combinatorial interest in such questions, they are

also important when studying properties of factorization in Krull Domains and, more generally,

in (Transfer) Krull Monoids. See [14] [15].

The most classic zero-sum invariant is the Davenport Constant D(G), defined as the minimal

length such that any sequence of terms from G with length at least D(G) contains a nontrivial

zero-sum subsequence. It is well-known that D(G) can be equivalently defined as the maximal

length of a minimal zero-sum sequence. Indeed, D(G) − 1 is, by definition, the maximal length

of a zero-sum free sequence T , and then one readily notes that T · −σ(T ) will be a minimal

zero-sum sequence of length D(G). This shows there are minimal zero-sums of length D(G).

Conversely, if S is any minimal zero-sum, then S · g[−1] is zero-sum free for any g ∈ Supp(G),

ensuring no minimal zero-sum can have length exceeding D(G).

The precise value of D(G) is open in general and known only for a few small families of abelian

groups, including p-groups and groups of rank at most two [14]. In particular [14, Theorem 5.8.3],

D(Cn ⊕ Cn) = 2n− 1

for n ≥ 1. This is an old result of Olson [25] or van Emde Boas and Kruyswijk [6] whose proof

required a more refined constant η(G), defined as the minimal length such that any sequence of

terms from G with length at least η(G) contains a nontrivial zero-sum subsequence of length at

most exp(G). For G = Cn ⊕ Cn, we have [25] [6] [14, Theorem 5.8.3]

η(Cn ⊕ Cn) = 3n− 2.

As a special case of a more general constant [3] [12], Delorme, Ordaz and Quiroz introduced

[4] the refined constant s≤ℓ(G) defined as the minimal length such that any sequence of terms

from G with length at least s≤ℓ(G) contains a nontrivial zero-sum subsequence of length at most

ℓ, i.e.,

|S| ≥ s≤ℓ(G) implies 0 ∈ Σ≤ℓ(S).

Relations between s≤ℓ(G) and Coding Theory may be found in [3], and other related works

dealing with s≤ℓ(G) include [7] [29] [11]. When ℓ < exp(G), we have s≤ℓ(G) = ∞; when ℓ =

exp(G), we have s≤ℓ(G) = η(G); and when ℓ ≥ D(G), we have s≤ℓ(G) = D(G). Thus, concerning

the constant s≤ℓ(G), the range of interest is ℓ ∈ [exp(G),D(G)], and s≤ℓ(G) interpolates between

the well-studied invariants η(G) and D(G). For the case of G = Cn ⊕ Cn, Chulin Wang and

Kevin Zhao determined the exact value of s≤ℓ(G), showing [32]

s≤D−k(Cn ⊕ Cn) = D + k, for k ∈ [0,D − exp(G)],
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where D = D(Cn ⊕ Cn). Since D(Cn ⊕ Cn) = 2n− 1, this can be restated as

s≤2n−1−k(Cn ⊕ Cn) = 2n− 1 + k, for k ∈ [0, n − 1].

With the value s≤2n−1−k(Cn ⊕ Cn) = 2n − 1 + k established, there arises the associated

inverse question characterizing all extremal sequences having maximal length 2n − 2 + k =

s≤2n−1−k(Cn ⊕ Cn) − 1 with 0 /∈ Σ≤2n−1−k(S). For k = 0, this amounts to characterizing all

zero-sum free sequences of maximal length 2n − 2 = D(G) − 1. For k = 1, this amounts to

characterizing all minimal zero-sum sequences of maximal length 2n − 1 = D(G). In view of

our previous commentary, these two cases are equivalent to each other, the extremal sequences

for k = 0 being simply the extremal sequences for k = 1 with any one term removed. For

k = n − 1, this amounts to characterizing all extremal sequences of length 3n − 3 = η(G) − 1

with 0 /∈ Σ≤n(S).

The precise structure in both the case k ≤ 1 and the case k = n−1 is known. For k ≤ 1, this is

achieved by combining the individual results of Gao, Geroldinger, Grynkiewicz and Reiher from

[8] [10] [21] [28] with the numerical verification of the case when n = 9 [2]. The characterization

of the extremal sequences for the Davenport constant has since proved quite useful, for instance

being employed as machinery for the results in [1] [13] [16] [17] [26] [30] [27]. Since we will need

to use both known cases heavily, we introduce some terminology.

A sequence S of terms from G = Cn ⊕ Cn is said to have Property A if there is a basis

(e1, e2) for G = Cn ⊕ Cn such that Supp(S) ⊆ {e1} ∪
(
〈e1〉 + e2

)
. We say that the group

G = Cn⊕Cn has Property A if every minimal zero-sum sequence S with |S| = D(G) = 2n− 1

satisfies Property A. A sequence S of terms from G = Cn ⊕ Cn is said to have Property B

if h(S) = exp(G) − 1 = n − 1, that is, S has some term e1 with multiplicity n − 1. We say

that the group G = Cn ⊕ Cn has Property B if every minimal zero-sum sequence S with

|S| = D(G) = 2n − 1 satisfies Property B. A simple argument shows that a minimal zero-sum

sequence S with |S| = D(G) = 2n− 1 satisfying Property A with basis (e1, e2) has the form

(1) S = en−1
1 ·

∏•

i∈[1,n]
(xie1 + e2)

for some x1, . . . , xn ∈ [0, n − 1] with x1 + . . . + xn ≡ 1 mod n. In particular, S satisfies

Property B. It is also not hard to show (see [21]) that a minimal zero-sum sequence S with

|S| = D(G) = 2n − 1 that satisfies Property B, say with ve1(S) = h(S) = n − 1, has a basis

(e1, e2) such that S has the form given in (1), and thus satisfies Property A with respect to the

basis (e1, e2). Note, when S has two distinct elements e1 and e2 both with multiplicity n − 1,

this ensures S = e
[n−1]
1 · e

[n−1]
2 · (e1 + e2) with (e1, e2) and (e2, e1) both bases for G with respect

to which S satisfies Property A.

Any sequence S having the form given in (1) is easily seen to be a minimal zero-sum sequence.

The converse, that every minimal zero-sum sequence S of maximal length |S| = D(G) = 2n− 1

must have the form given in (1), is the structural characterization of extremal sequences for

the Davenport constant that was previously alluded to, which required several years and the
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combined effort of all the results from [8] [10] [21] [28] (as well as the individual verification of

the case n = 9 [2]).

The precise structure of all extremal sequences for k = n−1 was achieved in [30] [9], and relies

on the characterization in the case k ≤ 1. We continue with the commonly used terminology in

this case.

A sequence S of terms from G = Cn ⊕ Cn is said to have Property C if every term of S

has multiplicity n− 1. We say that the group G = Cn ⊕Cn has Property C if every sequence

S with |S| = η(G) − 1 = 3n − 3 and 0 /∈ Σ≤n(S) must satisfy Property C. It was shown in [9]

that, assuming Property B (equivalently, property A) holds for G, then every sequence S with

|S| = η(G) − 1 = 3n − 3 and 0 /∈ Σ≤n(S) must satisfy Property C, i.e., that Property A/B

holding for G = Cn ⊕ Cn implies that Property C holds for G. Rather surprisingly, in contrast

to the case for Property A/B, this does not easily yield a precise structural description of all

possibilities for extremal sequences S when k = n − 1. For n = p prime, a derivation of the

precise characterization from Property C can be found in [5], and the derivation of the precise

characterization from Property C in the general case (when n may be composite) follows from

a result of Schmid [30]. All such sequences satisfy Property A, and thus have the form

(2) S = e
[n−1]
1 · e

[n−1]
2 · (xe1 + e2)

[n−1]

for some basis (e1, e2) for G = Cn ⊕ Cn and some x ∈ [1, n − 1] with gcd(x, n) = 1.

In view of the discussion above, the inverse problem for s≤2n−1−k(Cn⊕Cn) is complete for the

boundary values k ≤ 1 and k = n−1. For the interior values k ∈ [2, n−2] (and thus, for n ≥ 4),

a precise characterization of all extremal sequences S with length |S| = s≤2n−1−k(Cn ⊕Cn)− 1

but 0 /∈ Σ≤2n−1−k(S) is still open. There is partial progress in the case when n = p is prime

achieved in [23], where the precise structure is characterized for G = Cp⊕Cp when k ∈ [2, 2p+1
3 ]

with p ≥ 5, showing all such extremal sequences must have the form

S = e
[p−1]
1 · e

[p−1]
2 · (e1 + e2)

[k]

for some basis (e1, e2) for G = Cp ⊕ Cp. It was conjectured in [23] [32] that the same structure

should hold for any k ∈ [2, p − 2]. Naturally extending this conjecture to composite values,

we obtain the following conjecture that, if true, would fully characterize the structure of all

extremal sequences for the zero-sum invariant s≤2n−1−k(Cn ⊕ Cn).

Conjecture 1.1. Let n ≥ 2, let G = Cn ⊕ Cn, let k ∈ [0, n − 1], and let S be a sequence of

terms from G with

|S| = 2n− 2 + k and 0 /∈ Σ≤2n−1−k(S).

Then there exists a basis (e1, e2) for G such that the following hold.

1. If k = 0, then S · g satisfies the description given in Item 2, where g = −σ(S).

2. If k = 1, then

S = e
[n−1]
1 ·

∏•

i∈[1,mn]
(xie1 + e2),



6 DAVID J. GRYNKIEWICZ AND CHAO LIU

for some x1, . . . , xmn ∈ [0, n− 1] with x1 + . . .+ xmn ≡ 1 mod n.

3. If k ∈ [2, n − 2], then

S = e
[n−1]
1 · e

[n−1]
2 · (e1 + e2)

[k].

4. If k = n− 1, then

S = e
[n−1]
1 · e

[n−1]
2 · (xe1 + e2)

[n−1],

for some x ∈ [1, n − 1] with gcd(x, n) = 1.

Per the discussion above, Parts 1, 2 and 4 in Conjecture 1.1 are known, and Part 3 holds

when n = p is prime and k ≤ 2p+1
3 . It was also shown in [23] that Conjecture 1.1.3 holds when

n = ps ≥ 5 is a prime power with k ≤ 2n+1
3 and p ∤ k. In general, we say that Conjecture

1.1 holds for k in Cn ⊕ Cn if Conjecture 1.1 is true when G = Cn ⊕ Cn for the given value

k ∈ [0, n − 1]. The main goal of this paper is Theorems 1.2, which shows that the structural

description given in Conjecture 1.1.3 is multiplicative, thus reducing the full characterization

problem for s≤2n−1−k(Cn⊕Cn) to the case when n = p prime, so the case when G = Cp⊕Cp with

p ≥ 11 prime (in view of Corollary 1.3). This reduction to the prime case is the main aim of the

paper and emulates the strategy successfully used to characterize the extremal sequences for the

Davenport Constant (the case k ≤ 1), where the characterization problem was first reduced by

a similar multiplicative result to the prime case [8] [10] [21], with the prime case later resolved

by independent methods [28]. We remark that Schmid later reduced the characterization of

extremal sequences for the Davenport Constant, in a general rank two abelian group, to the

case Cn ⊕Cn [31], and a forthcoming work [22] aims to similarly extend our methods to general

rank two abelian groups.

Theorem 1.2. Let n,m ≥ 2 and let k ∈ [0,mn − 1] with k = kmn+ kn, where km ∈ [0,m − 1]

and kn ∈ [0, n − 1]. Suppose Conjecture 1.1 holds for kn in Cn ⊕ Cn and either Conjecture 1.1

also holds for km in Cm ⊕Cm or else kn ≥ 1, km ∈ [1,m− 2] and Conjecture 1.1 also holds for

km + 1 in Cm ⊕ Cm. Then Conjecture 1.1 holds for k in Cmn ⊕ Cmn.

While the reduction to the prime case is our main motivating goal, nonetheless, combining the

known instances of Conjecture 1.1 with Theorem 1.2 yields many new cases where Conjecture 1.1

is established here without condition. In particular, we have the following corollaries, showing

that Conjecture 1.1 is true when n is only divisible by primes at most 7, or when n is a prime

power with k ≤ 2n+1
3 , or when n is composite and k = n − d − 1 or n − 2d + 1 for a proper,

nontrivial divisor d | n. The second corollary, in the case m = 1, removes the restriction p ∤ k in

[23, Theorem 5].

Corollary 1.3. If n = 2s13s25s37s4 ≥ 2 with s1, s2, s3, s4 ≥ 0, then Conjecture 1.1 holds in

Cn ⊕Cn for all k ∈ [0, n− 1].

Corollary 1.4. For any prime power n ≥ 2, Conjecture 1.1 holds in Cn ⊕Cn for all k ≤ 2n+1
3 .
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Corollary 1.5. For n ≥ 4 composite with d | n a proper, nontrivial divisor, Conjecture 1.1

holds for k = n− d− 1 and for k = n− 2d+ 1 in Cn ⊕ Cn.

2. Preparatory Lemmas

The goal of this section is to collect together several properties about sequences having the

structure given in Conjecture 1.1. However, we will also need the following two results. The

first was a conjecture of Hamidoune established in [20, Theorem 1].

Theorem A. Let G be a finite abelian group, let k ≥ 1 and let S ∈ F(G) be a sequence with

|S| ≥ |G| + 1 and k ≤ |Supp(S)|. If h(S) ≤ |G| − k + 2 and 0 /∈ Σ|G|(S), then |Σ|G|(S)| ≥

|S| − |G|+ k − 1.

The second is [21, Lemma 3.2], which is the corrected version of [10, Proposition 4.2].

Theorem B. Let n ≥ 2, let s ≥ 3 and let G = Cn ⊕ Cn. If S ∈ F(G) is a zero-sum sequence

with |S| = sn− 1 and 0 /∈ Σ≤n−1(S), then there is a basis (e1, e2) for G such that either

1. Supp(S) ⊆ {e1} ∪
(
〈e1〉+ e2

)
and ve1(S) ≡ −1 mod n, or

2. S = e
[an]
1 · e

[bn−1]
2 · (xe1 + e2)

[cn−1]
· (xe1 +2e2) for some x ∈ [2, n− 2] with gcd(x, n) = 1,

and some a, b, c ≥ 1 with a+ b+ c = s.

We begin now with a stability result for sequences satisfying Conjecture 1.1 when k ≥ 1.

Lemma 2.1. Let n ≥ 2, let k ∈ [1, n−1], let G = Cn⊕Cn, and let S ∈ F(G) with |S| = 2n−2+k

and 0 /∈ Σ≤2n−1−k(S) such that Conjecture 1.1 holds for S. If x ∈ Supp(S), y ∈ G, and

S′ = S · x[−1]
· y also has 0 /∈ Σ≤2n−1−k(S

′) with Conjecture 1.1 holding for S′, then x = y.

Proof. If k = 1, then S and S′ satisfying the conclusion of Conjecture 1.1 implies they are both

zero-sum sequences, which forces x = y. If n = 2, then k = 1 ∈ [1, n−1] is forced. If k ∈ [2, n−2],

then n ≥ 4 and S = e
[n−1]
1 · e

[n−1]
2 · (e1 + e2)

[k] with e1 + (e1 + e2) 6= e2 and e2 + (e1 + e2) 6= e1

in view of n ≥ 3. Since n ≥ 3 and k ≥ 2, we also guaranteed e1, e2, e1 + e2 ∈ Supp(S · x[−1]).

Consequently, since S′ also satisfies the conclusion of Conjecture 1.1, it must do so with respect

to the basis (e1, e2), forcing x = y. Finally, if k = n−1 and n ≥ 3, then S = e
[n−1]
1 ·e

[n−1]
2 ·e

[n−1]
3

and Supp(S) = Supp(S · x[−1]) ⊆ Supp(S′) in view of n ≥ 3. Thus, since S′ also satisfies the

conclusion of Conjecture 1.1, it must do so with Supp(S′) = Supp(S), forcing x = y. �

We continue by showing how Property A implies the more detailed structure given in Con-

jecture 1.1.

Lemma 2.2. Let n ≥ 4, let k ∈ [2, n − 2], let G = Cn ⊕ Cn, and let S ∈ F(G) be a sequence

with |S| = 2n − 2 + k and 0 /∈ Σ≤2n−1−k(S). Suppose there are e1, e2 ∈ G with Supp(S) ⊆

{e1} ∪
(
〈e1〉 + e2

)
. Then there is some f2 ∈ 〈e1〉 + e2 such that (e1, f2) is a basis for G and

S = e
[n−1]
1 · f

[n−1]
2 · (e1 + f2)

[k].
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Proof. By hypothesis, Supp(S) ⊆ {e1} ∪
(
〈e1〉 + e2

)
⊆ 〈e1, e2〉. Let G′ = 〈e1, e2〉 ∼= Cm1 ⊕ Cm2

with m1 | m2. Let k′ = k + 2n −m1 −m2 ≥ k. If G′ = 〈e1, e2〉 were a proper subgroup, then

the hypotheses |S| = 2n − 2 + k = m1 +m2 − 1 + (k′ − 1) ensures that S contains a nontrivial

zero-sum with length at most max{m1+m2−1−(k′−1),m2} = max{2(m1+m2−n)−k,m2} ≤

max{2n − 1 − k, n} = 2n − 1 − k, contradicting the hypothesis 0 /∈ Σ≤2n−1−k(S). Therefore

G′ = 〈e1, e2〉 = G, implying that (e1, e2) is a basis for G.

In view of our hypotheses, we have S = e
[ℓ]
1 ·

∏•
i∈[1,2n−2+k−ℓ](xie1 + e2) for some ℓ ≥ 0 and

xi ∈ [0, n − 1]. We must have ℓ ≤ n − 1, else S will contain an n-term zero-sum, contrary to

the hypothesis 0 /∈ Σ≤2n−1−k(S). Let S2 =
∏•

i∈[1,2n−2+k−ℓ] xie1 and S1 = e
[ℓ]
1 . Then |S2| =

2n− 2+ k− ℓ ≥ n− 1+ k ≥ n+1. We also have h(S2) ≤ n− 1, else S again contains an n-term

zero-sum, contrary to hypothesis. Thus |Supp(S2)| ≥ 2.

Suppose |S1| = ℓ ≤ n − 1 − k. Then the hypothesis 0 /∈ Σ≤2n−1−k(S) implies 0 /∈ Σn(S2) +

(Σ(S1) ∪ {0}), whence Σn(S2) ⊆ [1, n − 1 − ℓ]e1 . In particular, |Σn(S2)| ≤ n − 1− ℓ. However,

applying Theorem A to S2 (using k = 2), we obtain |Σn(S2)| ≥ |S2| − n + 1 = n − 1 + k − ℓ >

n− 1− ℓ, contradicting what was just noted. So we can now assume |S1| = ℓ ≥ n− k.

Since |S1| = ℓ ≥ n − k, the hypothesis 0 /∈ Σ≤2n−1−k(S) implies that 0 /∈ Σn(S2) +

(Σ≤n−k−1(S1) ∪ {0}), whence Σn(S2) ⊆ [1, k]e1 . In particular, |Σn(S2)| ≤ k. Applying The-

orem A to S2 (using k = 2), and then using the estimate ℓ ≤ n − 1, we obtain |Σn(S2)| ≥

|S2| − n+ 1 = n− 1 + k − ℓ ≥ k. Thus equality must hold in all these estimates. In particular,

Σn(S2) = [1, k]e1 , ℓ = n−1, and |Σn(S2)| = |S2|−n+1. It now follows from Theorem A applied

to S2 (using k = 3) that |Supp(S2)| = 2.

Let ye1 ∈ Supp(S2) be an element with maximum multiplicity in S2, and let f2 = ye1 + e2.

Then (e1, f2) is also a basis for G and

(3) S = e
[n−1]
1 · f

[n−1−r]
2 · (xe1 + f2)

k+r

for some x ∈ [1, n−1] and r ∈ [0, n−1−k
2 ]. Let S′

2 = 0[n−1−r]
· (xe1)

[k+r]. Repeating the argument

of the previous paragraph using S′
2 in place of S2, we again conclude that Σn(S

′
2) = [1, k]e1 .

However, in view of the structure of S given by (3), we have Σn(S
′
2) = (r+1)xe1 + [0, k− 1]xe1 .

Thus

(4) [1, k]e1 = (r + 1)xe1 + [0, k − 1]xe1 .

Since k ≥ 2, the set [1, k]e1 is not contained in a coset of a proper subgroup of 〈e1〉. Hence (4)

ensures 〈xe1〉 = 〈e1〉. The left-hand side of (4) is an arithmetic progression with difference e1

and length k, with 2 ≤ k ≤ n − 2 = ord(e1) − 2. It is well known and easily derived that, for

such sets, the difference e1 is unique up to sign. The right-hand side of (4) is also an arithmetic

progression with difference xe1 and length k, with 2 ≤ k ≤ n− 2 = ord(xe1)− 2. Thus, by the

uniqueness of the difference, it follows that xe1 = ±e1.
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If xe1 = e1, then (4) forces r = 0 in view of k < n, yielding the desired structure for S. If

xe1 = −e1, then (4) forces r = n− k− 1 in view of k < n. However, since r ∈ [0, n−1−k
2 ], this in

only possible if k ≥ n− 1, which is contrary to hypothesis. �

The following lemma shows that the extension of a sequence satisfying Conjecture 1.1, ob-

tained by concatenating an additional term, also satisfies Conjecture 1.1.

Lemma 2.3. Let n ≥ 2, let k ∈ [1, n − 1] with either k = 1 or k ∈ [1, n − 2], let G = Cn ⊕ Cn,

and let S ∈ F(G) be a sequence with |S| = 2n−2+k and 0 /∈ Σ≤2n−1−k(S) such that Conjecture

1.1 holds for S. Suppose there is some g ∈ G such that 0 /∈ Σ≤2n−2−k(S · g). Then there exists a

basis (e1, e2) for G such that S · g = e
[n−1]
1 · e

[n−1]
2 · (e1 + e2)

[k+1] with g = e1 + e2. In particular,

Conjecture 1.1 holds for S · g (for k ≤ n− 2).

Proof. Let (e1, e2) be an arbitrary basis for which Conjecture 1.1 holds for S. Let g = x1e1+x2e2

with x1, x2 ∈ [0, n − 1].

Case 1: k ∈ [2, n − 2].

In this case, n ≥ 4 and S = e
[n−1]
1 · e

[n−1]
2 · (e1 + e2)

[k]. By symmetry, we can w.l.o.g. assume

x1 ≥ x2. If x2 = 0, then S · g contains n terms from 〈e1〉 ∼= Cn, and thus contains a zero-sum

subsequence of length at most D(Cn) = n, contradicting that 0 /∈ Σ2n−2−k(S · g) (in view of

k ≤ n − 2). Therefore x1 ≥ x2 ≥ 1. If x1 = x2 = 1, the desired conclusion follows, so we

can assume x1 ≥ 2. If x1 ≥ n − k, then e
[x1−x2]
2 · (e1 + e2)

[n−x1]
· (x1e1 + x2e2) is a zero-sum

subsequence of S · g with length n− x2 + 1 ≤ n, contradicting that 0 /∈ Σ2n−2−k(S · g). On the

other hand, if x2 ≤ x1 ≤ n−k, then e
[n−k−x1]
1 · e

[n−k−x2]
2 · (e1+ e2)

[k]
· (x1e1+x2e2) is a zero-sum

subsequence of S · g with length 2n − k − x1 − x2 + 1 ≤ 2n − 2 − k (with the latter inequality

in view of x1 ≥ 2 and x2 ≥ 1), again contradicting that 0 /∈ Σ2n−2−k(S · g).

Case 2: k = 1.

In this case, n ≥ 2 and

S = e
[n−1]
1 ·

∏•

i∈[1,n]
(yie1 + e2)

for some y1, . . . , yn ∈ [0, n−1] with y1+ . . .+yn ≡ 1 mod n. If n = 2, then S = e1 ·e2 · (e1+e2),

and our hypothesis 0 /∈ Σ≤2n−2−k(S ·g) = Σ≤1(S ·g) simply means g 6= 0. In this case, replacing

the basis (e1, e2) by a basis (f1, f2) with g /∈ {f1, f2}, we find S = f1 ·f2·(f1+f2) with g = f1+f2,

and the desired result follows. Therefore we now assume n ≥ 3, so k = 1 ≤ n− 2.

If x2 = 0, then S·g contains n terms from 〈e1〉 ∼= Cn, and thus contains a zero-sum subsequence

of length at most D(Cn) = n, contradicting that 0 /∈ Σ2n−2−k(S · g) (in view of k ≤ n − 2).

Therefore x2 ≥ 1.

Let S2 =
∏•

i∈[1,n] yie1. For any (−x1 + z)e1 ∈ Σn−x2(S2), where z ∈ [1, n], we have a

subset I ⊆ [1, n] with |I| = n − x2 and
∑
i∈I

(yie1 + e2) = (−x1 + z)e1 + (n − x2)e2, meaning



10 DAVID J. GRYNKIEWICZ AND CHAO LIU

e
[n−z]
1 · (x1e1+x2e2) ·

∏•
i∈I(yie1+ e2) is a zero-sum subsequence of S · g of length 2n− z+1−x2.

Since 0 /∈ Σ≤2n−2−k(S · g) = Σ2n−3(S · g), this forces

(5) z + x2 ≤ 3.

Now S2 is a sequence of n terms from a cyclic group of order n with n−x2 ∈ [1, n−1]. Moreover,

since y1 + . . .+ yn ≡ 1 mod n, we have |Supp(S2)| ≥ 2.

If T | S2 is any subsequence of length n − x2, then n − x2 ∈ [1, n − 1] = [1, |S2| − 1] ensures

that both T and T [−1]
·S2 contain at least one term, and since |Supp(S2)| ≥ 2, it is thus possible

to find terms g ∈ Supp(T ) and h ∈ Supp(T [−1]
· S2) with g 6= h. This ensures that T · g[−1]

· h

is also a subsequence of S2 with length n − x2, and one with sum σ(T ) − g + h 6= σ(T ). Thus

|Σn−x2(S2)| ≥ 2, meaning it is possible to find I as defined above with z ≥ 2. Combined with

(5) and x2 ≥ 1, it follows that only x2 = 1 is possible, whence g = x1e1+ e2. Since (e1, xe1+ e2)

is also a basis for which Conjecture 1.1 holds for S, for any x ∈ Z, we can replace the arbitrary

basis (e1, e2) for which Conjecture 1.1 holds for S with the basis (e1, (x1 − 1)e1 + e2), thereby

allowing us to w.l.o.g. assume x1 = 1 in view of e1 +
(
(x1 − 1)e1 + e2

)
= g. Thus we now have

g = e1 + e2 with x1 = x2 = 1.

Since x2 = 1, we have

Σn−x2(S2) = Σn−1(S2) = σ(S2)− Σ1(S2) = e1 − Supp(S2),

with the final inequality above in view of y1 + . . . + yn ≡ 1 mod n. Since x2 = 1, (5) ensures

that z ≤ 2, which combined with z ∈ [1, n] forces z ∈ {1, 2}. Thus

e1 − Supp(S2) = Σn−x2(S2) ⊆ {−x1e1 + e1,−x1e1 + 2e1} = {0, e1},

whence

Supp(S2) = {0, e1}

in view of |Supp(S2)| ≥ 2. It follows that yi ≡ 0 or 1 mod n for every i ∈ [1, n]. Letting a ∈

[1, n−1] be the number of i ∈ [1, n] with yi ≡ 1 mod m, we find 1 ≡ y1+. . .+yn ≡ a+(n−a)(0)

mod n, implying a ≡ 1 mod n. Thus S = e
[n−1]
1 ·e

[n−1]
2 ·(e1+e2) with g = e1+e2, as desired. �

The following lemma is the reverse of Lemma 2.3, showing that, if Conjecture 1.1 holds for a

sequence and we remove a term, then Conjecture 1.1 also holds for the resulting subsequence.

Lemma 2.4. Let n ≥ 3, let k ∈ [1, n − 2], let G = Cn ⊕ Cn, and let S ∈ F(G) be a sequence

with |S| = 2n − 2 + k and 0 /∈ Σ≤2n−1−k(S). Suppose there is some g ∈ G such that 0 /∈

Σ≤2n−2−k(S · g) with Conjecture 1.1 holding for S · g. Then there exists a basis (e1, e2) for G

such that S · g = e
[n−1]
1 · e

[n−1]
2 · (e1 + e2)

[k+1] with g = e1 + e2. In particular, Conjecture 1.1

holds for S.

Proof. Let (e1, e2) be an arbitrary basis for which Conjecture 1.1 holds for S · g. Then

S · g = e
[n−1]
1 · e

[n−1]
2 · (xe1 + e2)

[k+1]
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for some x ∈ [1, n − 1] with gcd(x, n) = 1 and either x = 1 or k = n− 2.

Suppose x = 1. In such case, if g = e1 + e2, the proof is complete, so either g = e2 or

g = e1. But now (e1 + e2)
[k+1]

· e
[n−k−1]
1 · e

[n−k−1]
2 is a zero-sum subsequence of S (in view of the

hypothesis k ≥ 1) with length 2n − 1− k, contradicting that 0 /∈ Σ≤2n−1−k(S). So we can now

assume x ≥ 2 with k = n− 2, in which case

S · g = e
[n−1]
1 · e

[n−1]
2 · (xe1 + e2)

[n−1].

If x = n − 1, then using the basis (e1,−e1 + e2) in place of (e1, e2), we find ourselves in the

already completed case when x = 1. Thus we can assume x ∈ [2, n − 2] with gcd(x, n) = 1,

implying n ≥ 5. Thus k = n − 2 ≥ 3 with Supp(S) ⊆ {e1} ∪ (〈e1〉 + e2), |S| = 2n − 2 + k and

0 /∈ Σ≤2n−1−k(S), allowing us to apply Lemma 2.2 to S to conclude that there is a basis (f1, f2)

for G such that S = f
[n−1]
1 · f

[n−1]
2 · (f1 + f2)

[k]. Since every term of S · g has multiplicity n− 1,

it follows that g = f1 + f2, and the desired conclusion follows. �

3. The Main Proof

We divide the proof of Theorem 1.2 into two main cases depending on the value of kn ∈

[0, n − 1]. We begin first with the case when kn ∈ [0, 1].

Proposition 3.1. Let m, n ≥ 2 and let k ∈ [0,mn−1] with k = kmn+kn, where km ∈ [0,m−1]

and kn ∈ [0, 1]. Suppose either Conjecture 1.1 holds for km in Cm ⊕ Cm, or else kn = 1,

km ∈ [1,m− 2] and Conjecture 1.1 holds for km+1 in Cm⊕Cm. Then Conjecture 1.1 holds for

k in Cmn ⊕ Cmn.

Proof. As remarked in the introduction, Conjecture 1.1 holds for k ≤ 1 or k = mn− 1 in every

group Cmn ⊕ Cmn. Therefore we can assume km ∈ [1,m − 1] and k = kmn + kn ∈ [2,mn − 2].

Let G = Cmn ⊕Cmn and let S ∈ F(G) be a sequence with

(6) |S| = 2nm− 2 + k and 0 /∈ Σ≤2nm−1−k(S).

We need to show Conjecture 1.1.3 holds for S. Let ϕ : G → G be the multiplication by m

homomorphism, so ϕ(x) = mx. Note

ϕ(G) = mG ∼= Cn ⊕ Cn and kerϕ = nG ∼= Cm ⊕ Cm.

If kn = 1, set S∗ = S. If kn = 0, we can choose any element g0 ∈ −σ(S) + kerϕ and set

S∗ = S · g0. When kn = 0, the definition of g0 ensures that ϕ(S∗) is zero-sum. When kn = 1,

we will shortly see below in Claim A that ϕ(S∗) is also zero-sum. Note, in all cases,

|S∗| = 2mn− 1 + kmn.

Define a block decomposition of S∗ to be a factorization

S∗ = W0 ·W1 · . . . ·W2m−2+km
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with 1 ≤ |Wi| ≤ n and ϕ(Wi) zero-sum for each i ∈ [1, 2m − 2 + km]. Since s≤n(ϕ(G)) =

s≤n(Cn ⊕ Cn) = 3n − 2 and |S| ≥ (2m − 3 + km)n + 3n − 2, it follows by repeated application

of the definition of s≤n(ϕ(G)) that S∗ has a block decomposition, and one with g0 ∈ Supp(W0)

when kn = 0.

Claim A. If S∗ = W0 · W1 · . . . · W2m−2+km is a block decomposition, then |Wi| = n for all

i ∈ [1, 2m − 2 + km], ϕ(W0) is a minimal zero-sum sequence of length |W0| = 2n − 1, and

0 /∈ Σ≤n−1(ϕ(S
∗)).

Proof. Suppose kn = 1, so S∗ = S. Let us show that 0 /∈ Σ≤2n−2(ϕ(W0)). Assuming this fails,

there is a nontrivial subsequenceW ′
0 | W0 with |W ′

0| ≤ 2n−2 and ϕ(W ′
0) zero-sum. Set W ′

i = Wi

for i ∈ [1, 2m − 2 + km]. Then Sσ = σ(W ′
0) · σ(W

′
1) · . . . · σ(W

′
2m−2+km

) is a sequence of terms

from kerϕ ∼= Cm ⊕ Cm with |Sσ| = 2m− 1 + km. Since s≤2m−1−km(Cm ⊕ Cm) = 2m− 1 + km,

it follows that Sσ has a nontrivial zero-sum subsequence of length at most 2m − 1 − km, say∏•
i∈I σ(W

′
i ) for some nonempty subset I ⊆ [0, 2m − 2 + km] with |I| ≤ 2m − 1 − km. But now∏•

i∈I W
′
i is a nontrivial zero-sum subsequence of S∗ = S with length

∑

i∈I

|W ′
i | ≤ max{|W ′

0|, n}+ (|I| − 1)n ≤ 2n − 2 + (2m− 2− km)n = 2mn − 1− k,

contradicting (6). This show that 0 /∈ Σ2n−2(ϕ(W0)). As a result,

|W0| ≤ s≤2n−2(ϕ(G)) − 1 = s≤2n−2(Cn ⊕ Cn)− 1 = 2n− 1.

Suppose kn = 0. Then S∗ = S · g0 with ϕ(S · g0) zero-sum by definition of g0. Hence ϕ(W0) is

also a zero-sum sequence. Let us show that ϕ(W0) is a minimal zero-sum sequence. Assuming

this fails, then W0 contains disjoint, nontrivial subsequences W2m−1+km · W2m+km | W0 with

|W2m−1+km | + |W2m+km | ≤ n + 2n − 1 and ϕ(W2m−1+km) and ϕ(W2m+km) both zero-sum (if

|W0| ≤ 3n − 1, this is trivial in view of ϕ(W0) not being a minimal zero-sum, while the same

conclusion follows from D(ϕ(G)) = 2n − 1 and s≤n(ϕ(G)) = 3n − 2 when |W0| ≥ 3n − 1). By

passing to appropriate zero-sum subsequences, we can then further assume ϕ(W2m−1+km) and

ϕ(W2m+km) are each minimal zero-sum subsequences, so that |Wi| ≤ D(ϕ(G)) = 2n−1 for both

i ∈ {2m−1+km, 2m−km}. As at most one of the sequencesWj can contain the term g0, it follows

that
∏•

i∈[1,2m+km]\{j}Wj | S for some j ∈ [1, 2m+ km]. Now σ(W1) · . . . ·σ(W2m+km) ·σ(Wj)
[−1]

is a sequence of terms from kerϕ ∼= Cm⊕Cm with length s≤2m−1−km(Cm⊕Cm) = 2m− 1+ km.

It follows that there is a zero-sum subsequence
∏•

i∈I σ(Wi) for some I ⊆ [1, 2m+ km] \ {j} with

1 ≤ |I| ≤ 2m− 1− km. In such case, if |I| ≥ 2, then T =
∏•

i∈I Wi is a zero-sum subsequence of

S with length

|T | ≤ (|I| − 2)n+max{2n, n + |W2m−1+km |, n + |W2m+km |, |W2m−1+km |+ |W2m+km |}

≤ (|I| − 2)n+ 3n− 1 ≤ (2m− 3− km)n+ 3n− 1 = 2mn− 1 + k,
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contrary to (6). On the other hand, if |I| = 1, then T =
∏•

i∈I Wi is a zero-sum subsequence of

S with length |T | ≤ max{n, |W2m−1+km |, |W2m+km |} ≤ 2n− 1 ≤ 2mn− 1− k, also contradicting

(6). This shows that ϕ(W0) must be a minimal zero-sum sequence. In particular,

|W0| ≤ D(Cn ⊕ Cn) = 2n− 1.

Regardless of whether kn = 0 or 1, we have shown that |W0| ≤ 2n − 1. As a result, since

|Wi| ≤ n for all i ∈ [1, 2m− 2 + km], we have

2n− 1 = 2mn− 1 + kmn− (2m− 2 + km)n ≤ |S∗| −
2m−2+km∑

i=1

|Wi| = |W0| ≤ 2n− 1,

forcing equality to hold in these estimates, i.e., |Wi| = n for all i ∈ [1, 2m− 2 + km] and |W0| =

2n−1. If kn = 0, we have already shown that ϕ(W0) is a minimal zero-sum sequence. For kn = 1,

we established that 0 /∈ Σ2n−2(ϕ(W0)), which combined with D(ϕ(G)) = D(Cn ⊕ Cn) = 2n − 1

forces ϕ(W0) to be a minimal zero-sum sequence in this case as well. If 0 ∈ Σ≤n−1(ϕ(S
∗)), then

there is a nontrivial subsequence W ′
1 | S

∗ with 1 ≤ |W ′
1| ≤ n− 1 and ϕ(W ′

1) zero-sum. Then, by

the argument showing that S∗ has some block decomposition, we can find a block decomposition

S∗ = W ′
0·W

′
1·. . .·W

′
2m−2+km

with |W ′
1| < n, contrary to what was just established for an arbitrary

block decomposition. Thus 0 /∈ Σ≤n−1(ϕ(S
∗)), and all parts of Claim A are established. �

Suppose

(7) S∗ = W0 · . . . ·W2m−2+km

with each ϕ(Wi) a nontrivial zero-sum for i ∈ [0, 2m − 2 + km]. We call this a weak block

decomposition of S∗. In view of Claim A, we have |Wi| ≥ n for all ∈ [0, 2m− 2 + km], and since

|S∗| = 2mn− 1− kmn > (2m− 1− km)n, we cannot have |Wi| = n for all i ∈ [0, 2m− 2 + km].

Let k∅ ∈ [0, 2m − 2 + km] be an index with

{
|Wk∅ | > n if kn = 1,

g0 ∈ Supp(W0) if kn = 0.

Then define

Sσ = σ(W0) · . . . · σ(W2m−2+km) · σ(Wk∅)
[−1] ∈ F(kerϕ).

We call k∅ and Sσ the associated index and sequence for the block decomposition. For j ∈

[0, 2m − 2 + km], set

W̃j =

{
Wj · g

[−1]
0 if kn = 0 and j = k∅;

Wj otherwise.

In view of Claim A, any block decomposition is also a weak block decomposition. If S∗ =

W0 · W1 · . . . · W2m−2+km is a block decomposition and kn = 1, then k∅ = 0 is forced as

|Wi| = n for all i ≥ 1. On the other hand, if kn = 0, then there is a block decomposition with

g0 ∈ Supp(W0) as remarked earlier, and thus with k∅ = 0.
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Claim B. Suppose S∗ = W0·. . .·W2m−2+km is a weak block decomposition with associated index

k∅ and associated sequence Sσ. Then |Sσ| = 2m− 2 + km with 0 /∈ Σ≤2m−1−km(Sσ). Moreover,

if we also have kn = 1, then |σ(Wk∅) · Sσ| = 2m − 1 + km with 0 /∈ Σ≤2m−2−km(σ(Wk∅) · Sσ).

Regardless of whether kn = 0 or 1, Conjecture 1.1 holds for Sσ.

Proof. We have |Sσ| = 2m−2+km by definition. Assume by contradiction 0 ∈ Σ≤2m−1−km(Sσ).

Then there is a zero-sum subsequence
∏•

i∈I σ(Wi) for some I ⊆ [0, 2m − 2 + km] \ {k∅} with

1 ≤ |I| ≤ 2m−1−km. By Claim A, we have 0 /∈ Σ≤n−1(ϕ(S
∗)), which ensures |Wi| ≥ n for all i ∈

[0, 2m−2+km]\I. Since k∅ /∈ I, we have |Wk∅ | ≥ n+kn with k∅ ∈ [0, 2m−2+km]\I (by definition

of k∅). It follows that T :=
∏•

i∈I Wi is a nontrivial zero-sum subsequence of S with length

|T | = |S∗|−
∑

i∈[0,2m−2+km]\I

|Wi| ≤ |S∗|−(2m−1+km−|I|)n−kn ≤ |S∗|−2kmn−kn = 2mn−1−k,

contradicting (6). So we instead conclude that |Sσ| = 2m− 2 + km and 0 /∈ Σ≤2m−1−km(Sσ).

Suppose kn = 1, so that S∗ = S. Assume by contradiction that 0 ∈ Σ≤2m−2−km(σ(Wk∅) ·Sσ).

Then there is a zero-sum subsequence
∏•

i∈I σ(Wi) for some I ⊆ [0, 2m − 2 + km] with 1 ≤

|I| ≤ 2m − 2 − km. By Claim A, we have 0 /∈ Σ≤n−1(ϕ(S
∗)), which ensures |Wi| ≥ n for all

i ∈ [0, 2m − 2 + km] \ I. Hence T :=
∏•

i∈I Wi is a nontrivial zero-sum subsequence of S with

length

|T | = |S∗| −
∑

i∈[0,2m−2+km]\I

|Wi| ≤ |S∗| − (2m− 1 + km − |I|)n ≤ |S∗| − (2km + 1)n

= 2mn− 1− kmn− n ≤ 2mn− 1− k,

contradicting (6). So we instead conclude that we have |σ(Wk∅) · Sσ| = 2m − 1 + km and

0 /∈ Σ≤2m−2−km(σ(Wk∅) · Sσ).

If Conjecture 1.1 holds for km in Cm ⊕ Cm, then the first part of Claim B ensures that

Conjecture 1.1 holds for Sσ. Otherwise, the hypotheses of Proposition 3.1 ensure that kn = 1

and km ∈ [1,m−2] with Conjecture 1.1 holding for km+1 in Cm⊕Cm. In such case, the second

part of Claim B ensures that Conjecture 1.1 holds for σ(Wk∅) · Sσ, and then applying Lemma

2.4 shows that Conjecture 1.1 holds for Sσ. �

Claim C. There exists a basis (f1, f2) for ϕ(G) = Cn ⊕ Cn such that either

1. Supp(ϕ(S∗)) ⊆ f1 ∪
(
〈f1〉+ f2

)
, or

2. ϕ(S∗) = f
[an]
1 · f

[bn−1]
2 · f

[cn−1]
3 · (f2 + f3), where f3 = xf1 + f2 for some x ∈ [2, n − 2]

with gcd(x, n) = 1, a, b, c ≥ 1 and a+ b+ c = 2m+ km.

Proof. By Claim A, we have 0 /∈ Σ≤n−1(ϕ(S
∗)), while |ϕ(S∗)| = |S∗| = (2m + km)n − 1. Thus

Claim C follows from Theorem B. �

We define a term g ∈ Supp(S) to be good if g, h ∈ Supp(S) with ϕ(g) = ϕ(h) implies g = h.

A term g ∈ Supp(ϕ(S)) is good if Supp(S) contains exactly one element from ϕ−1(g). Then, for

g ∈ Supp(S), we find that ϕ(g) = mg is good if and only if g is good.
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Claim D. Suppose S∗ = W0 · W1 · . . . · W2m−2+km is a weak block decomposition. If g ∈

Supp(Wj), h ∈ Supp(W̃k∅) and ϕ(g) = ϕ(h), where j, k∅ ∈ [0, 2m − 2 + km] are distinct, then

g = h is good.

Proof. Since ϕ(g) = ϕ(h), setting W ′
j = Wj · g

[−1]
· h, W ′

k∅
= Wk∅ · h[−1]

· g, and W ′
i = Wi

for all i 6= j, k, we obtain a new weak block decomposition S∗ = W ′
0 · W

′
1 · . . . · W

′
2m−2+km

.

Since h ∈ Supp(W̃k∅), we have g0 ∈ Supp(W ′
k∅
) for kn = 0, and |W ′

k∅
| = |Wk∅ | > n for kn = 1.

Consequently, if we let Sσ and S′
σ be the associated sequences for the original and new block

decompositions, with k∅ and k′∅ the associated indices, we find that k∅ = k′∅ with S′
σ obtained

from Sσ by replacing the term σ(Wj) by the term σ(W ′
j) = σ(Wj) − g + h. In view of Claim

B, it follows that Conjecture 1.1 holds for both sequences S′
σ and Sσ using km ∈ [1,m − 1]

modulo m. Thus Lemma 2.1 implies that g = h. Repeating this argument for an arbitrary

g′ ∈ Supp(S · W
[−1]
k∅

) using the fixed h ∈ Supp(W̃k∅), we conclude that g′ = h = g for all

g′ ∈ Supp(S·W
[−1]
k∅

) with ϕ(g′) = ϕ(g) = ϕ(h). Likewise, repeating the argument for an arbitrary

h′ ∈ Supp(W̃k∅) using the fixed g ∈ Supp(Wj), we find h′ = g = h for all h′ ∈ Supp(W̃k∅) with

ϕ(h′) = ϕ(g) = ϕ(h). It follows that g = h is good. �

Claim E. Claim C.1 holds for S∗.

Proof. Assume instead that Claim C.2 holds. Let (f1, f2) be a basis for which Claim C.2 holds

and let x∗ ∈ [2, n − 2] be the multiplicative inverse of −x modulo n, so

x∗x ≡ −1 mod n.

In view of Claim C.2, there is a block decomposition S∗ = W0 · W1 · . . . · W2m−2+km with

ϕ(W0) = f
[n−1]
1 ·f

[x∗]
2 ·f

[n−x∗]
3 , ϕ(W1) = f

[x∗−1]
3 ·f

[n−x∗−1]
2 ·f1·(f2+f3) and ϕ(Wi) ∈ {f

[n]
1 , f

[n]
2 , f

[n]
3 }

for all i ∈ [2, 2m− 2+ km]. We call any such block decomposition a strong block decomposition

of S∗. For kn = 0, it can also be assumed that either g0 ∈ Supp(W0) or else g0 ∈ Supp(W1) and

ϕ(g0) = f2 + f3, since Supp(ϕ(W0)) contains every element from Supp(ϕ(S∗)) apart from the

unique term equal to f2 + f3 which is contained in ϕ(W1).

Let us first show all g ∈ Supp(S) are good. Since Claim C.2 holds, we have n ≥ 5 (as

x ∈ [2, n− 2] with gcd(x, n) = 1) and there is a unique term g of S∗ with ϕ(g) = f2 + f3, which

is trivially good if g ∈ Supp(S). Consider f ∈ {f1, f2, f1+f2} and let S∗ = W0·W1·. . .·W2m−2+km

be a strong block decomposition, and if kn = 0, assume either g0 ∈ Supp(W0) or else g0 ∈

Supp(W1) and ϕ(g0) = f2 + f3. Since vf (ϕ(W0)) ≥ 2, there is some h ∈ Supp(W̃0) with

ϕ(h) = f . Since vf (ϕ(W1)) ≥ 1 with either g0 ∈ Supp(W0) or ϕ(g0) = f2 + f3, there is some

g ∈ Supp(W̃1) with ϕ(g) = f . If kn = 1, then k∅ = 0, and if kn = 0, then k∅ ∈ {0, 1} (as

g0 ∈ Supp(W0 ·W1)). Thus applying Claim D shows that ϕ(g) = f is good, as claimed.

Now, since all g ∈ Supp(S) are good, an appropriate choice of pre-images for the elements f1

and f2 yields Supp(S) ⊆ {e1, e2, e3 +α, e2 + e3 +β} for some α, β ∈ kerϕ, where e3 := xe1 + e2,

ϕ(e1) = f1 and ϕ(e2) = f2. As before, let S∗ = W0 · W1 · . . . · W2m−2+km be a strong block
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decomposition, and if kn = 0, assume either g0 ∈ Supp(W0) or else g0 ∈ Supp(W1) and ϕ(g0) =

f2+f3. By choosing g0 ∈ g0+kerϕ appropriately, we can assume g0 ∈ {e1, e2, e3+α, e2+e3+β}

for kn = 0 as well. Since x, x∗ ∈ [2, n− 2], we have ve1(W0) = n− 1 > x and ve2(W0) = x∗ > 1,

whence e
[x]
1 · e2 | W̃0 and e3 + α | W̃1. Thus, setting W ′

0 = W0 · (e
[x]
1 · e2)

[−1]
· (e3 + α),

W ′
1 = W1 · (e3 + α)[−1]

· e
[x]
1 · e2 and W ′

i = Wi for i ≥ 2, we obtain a weak block decomposition

S∗ = W ′
0 ·W

′
1 · . . . ·W

′
2m−2+km

say with associated index k′∅ and associated sequence S′
σ. Since

e
[x]
1 · e2 | W̃0 and e3 + α | W̃1, we have k′∅ = k∅ ∈ {0, 1} when kn = 0, while |W ′

0| = 2n− 1− x ≥

n + 1 ensures that k′∅ = k∅ = 0 for kn = 1. As a result, Claim B and Lemma 2.1 imply

Sσ = S′
σ with α = 0. Similarly, since x, x∗ ∈ [2, n − 2], we have ve1(W0) = n − 1 > n − x and

ve3(W0) = n−x∗ > 1, whence e
[n−x]
1 · e3 | W̃0 and e2 | W̃1. Setting W ′

0 = W0 · (e
[n−x]
1 · e3)

[−1]
· e2,

W ′
1 = W1 · e

[−1]
2 · e

[n−x]
1 · e3 and W ′

i = Wi for i ≥ 2, we obtain a weak block decomposition

S∗ = W ′
0 · W ′

1 · . . . · W ′
2m−2+km

with |W ′
0| = 2n − 1 − (n − x) ≥ n + 1 having associated

index k′∅ = k∅ and associated sequence S′
σ. Thus Claim B and Lemma 2.1 yield Sσ = S′

σ and

ne1 = (n − x)e1 + e3 − e2 = 0. We thus obtain a zero-sum subsequence e
[n]
1 | S, contradicting

that 0 /∈ Σ≤n(S) (which holds by (6)), unless a = 1, kn = 0 and ϕ(g0) = f1. However, in such

case, there are |S∗| −n− 1 = (2m+ km − 1)n− 2 ≥ 2mn− 2 terms of S equal to either e2 or e3,

so that the pigeonhole principle yields that either e2 or e3 has multiplicity at least mn − 1 in

S. If either has multiplicity at least mn, then e
[mn]
2 or e

[mn]
3 is a zero-sum subsequence of length

mn, contradicting that 0 /∈ Σ≤mn(S) by (6). On the other hand, if both e2 and e3 = xe1 + e2

have multiplicity mn− 1 ≥ n (as m ≥ 2), then e
[mn−n]
2 · e

[n]
3 is a zero-sum subsequence of length

mn (as ne1 = 0), again contradicting that 0 /∈ Σ≤mn(S). �

In view of Claim E, we now assume Claim C.1 holds for the remainder of the proof, say with

basis (f1, f2). Then Supp(ϕ(S∗)) ⊆ f1 ∪
(
〈f1〉 + f2

)
, implying that the number of terms from

〈f1〉+ f2 in any zero-sum subsequence of ϕ(S) must be congruent to 0 modulo n. As a result,

if S∗ = W0 ·W1 · . . . ·W2m−2+km is any block decomposition, then since |Wi| = n for i ≥ 1 and

|Wi| = 2n− 1, we find that

(8) ϕ(W0) = f
[n−1]
1 ·

∏•

i∈[1,n]
(xif1 + f2) and ϕ(Wi) ∈ {f

[n]
1 ,

∏•

i∈[1,n]
(cif1 + f2)} for i ≥ 1,

where x1, . . . , xn, c1, . . . , cn ∈ [0, n − 1] with c1 + . . . + cn ≡ 0 mod n and x1 + . . . + xn ≡ 1

mod n. Note, if (f1, f2) is a basis for which Claim C.1 holds, then so is (f1, xf1 + f2) for any

x ∈ Z.

Claim F. If n = 2, then all terms x ∈ Supp(S) are good.

Proof. Let S∗ = W0 ·W1 · . . . ·W2m−2+km be a block decomposition. Then ϕ(W0) is a minimal

zero-sum sequence of length 2n − 1 = 3 by Claim A, so ϕ(W0) = f1 · f2 · (f1 + f2) with f1, f2

and f1 + f2 the three nonzero elements of ϕ(G) ∼= Cn ⊕ Cn = C2 ⊕ C2. By Claim C.1, we have

Supp(ϕ(S)) ⊆ {f1, f2, f1 + f2} = ϕ(G) \ {0}, and |Supp(ϕ(Wi))| = 1 for i ∈ [1, 2m − 2 + km],

allowing us to assume g0 ∈ Supp(W0) when kn = 0, and by choosing f1 and f2 appropriately,
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we can w.l.o.g. assume ϕ(g0) = f1+ f2. If vf1(S) = 1, then the definition of good holds trivially

for f1. Otherwise, there is some Wj with f1 ∈ Supp(Wj) and j ≥ 1, in which case Claim D,

implies that f1 is good. Thus f1 is good, and the same argument shows that f2 is good. If

kn = 1, the argument also shows f1 + f2 is good. The proof of the claim is now complete unless

vf1+f2(ϕ(S)) ≥ 2 with kn = 0 and S∗ = S · g0, which we now assume. Note ϕ(g0) = f1 + f2,

so W ′
1 = (f1 + f2) · ϕ(g0) is a length two zero-sum dividing ϕ(S · g0). Applying the argument

showing the existence of a block decomposition, it follows that there is a block decomposition

W ′
0 ·W

′
1 · . . . ·W

′
2m−2+km

of S∗ with ϕ(W ′
1) = (f1+f2) ·ϕ(g0) and k∅ = 1. Since vf1+f2(ϕ(S)) ≥ 2,

it follows that there is some j ∈ [0, 2m − 2 + km] \ {1} with f1 + f2 ∈ Supp(ϕ(Wj)), and now

Claim D, applied to the block decomposition W ′
0 ·W

′
1 · . . . ·W

′
2m−2+km

, implies that f1 + f2 is

good, completing the claim. �

Claim G. Suppose S∗ = W0 · W1 · . . . · W2m−2+km is a block decomposition with k∅ = 0. If

g1 ∈ Supp(W̃j1), g2 ∈ Supp(W̃j2) and ϕ(g1) = ϕ(g2), where j1, j2 ∈ [0, 2m−2+km] are distinct,

then g1 = g2 is good.

Proof. In view of Claim F, we can assume n ≥ 3. Since vf1(ϕ(W0)) = n − 1 ≥ 2 and |W0| −

vf1(ϕ(W0)) = n ≥ 3 by (8), we have and can w.l.o.g. assume (by possibly exchanging f2 for an

appropriate alternative from 〈f1〉+ f2) that

(9) f1 ∈ Supp(ϕ(W̃0)) and f2 ∈ Supp(ϕ(W̃0)).

If j1 = 0 or j2 = 0, then Claim D implies g1 = g2 is good (as k∅ = 0). Therefore we can

w.l.o.g. assume j1 = 1 and j2 = 2. By Claim C.1, we have Supp(ϕ(S)) ⊆ {f1} ∪
(
〈f1〉 + f2

)
.

If ϕ(g1) = f1 ∈ Supp(ϕ(W̃0)), then Claim D applied with k∅ = 0 and j = 1 implies that g1 is

good. Therefore, in view of (8), we can assume

(10) Supp(ϕ(W1)) ⊆ 〈f1〉+ f2 and Supp(ϕ(W2)) ⊆ 〈f1〉+ f2,

with the latter following by an analogous argument. In particular,

ϕ(g1) = ϕ(g2) = x1f1 + f2 for some x1 ∈ [0, n − 1].

Suppose kn = 1. Then |W0 · W1 · g
[−1]
1 | = 3n − 2 = η(Cn ⊕ Cn), ensuring by Claim A

that W0 · W1 · g
[−1]
1 contains an n-term subsequence W ′

0 with ϕ(W ′
0) zero-sum. Setting W ′

0 =

W0 ·W1 · (W
′
1)

[−1], it follows that S∗ = W ′
0 ·W

′
1 ·W2 · . . . ·W2m−2+km is a block decomposition

with g1 ∈ Supp(W ′
0), g2 ∈ Supp(W ′

2) and associated index k′∅ = 0, in which case Claim D

implies that g1 = g2 is good, as desired.

Suppose kn = 0. Since k∅ = 0, we have g0 ∈ Supp(W0) with |W0 · W1 · g
[−1]
1 · g

[−1]
0 | =

3n− 3. If W0 ·W1 · g
[−1]
1 · g

[−1]
0 contains an n-term subsequence W ′

1 with ϕ(W ′
0) zero-sum, then

setting W ′
0 = W0 ·W1 · (W

′
1)

[−1], it follows that S∗ = W ′
0 ·W

′
1 ·W2 · . . . ·W2m−2+km is a block

decomposition with g0 · g1 | W ′
0, g2 ∈ Supp(W2) and associated index k′∅ = 0, in which case

Claim D implies that g1 = g2 is good. Therefore, in view of Claim A, we can instead assume
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0 /∈ Σ≤n(ϕ(W0 ·W1 · g
[−1]
1 · g

[−1]
0 )). We have f1, f2 ∈ Supp(ϕ(W0 · g

[−1]
0 )) ⊆ Supp(W ′

0) by (9), so

applying the established Conjecture 1.1.4 to ϕ(W0 ·W1 · g
[−1]
1 · g

[−1]
0 ) yields

(11) ϕ(W0 ·W1 · g
[−1]
1 · g

[−1]
0 ) = f

[n−1]
1 · f

[n−1]
2 · f

[n−1]
3 for some f3 = x3f1 + f2,

where we have f3 = x3f1 + f2 since Supp(ϕ(S)) ⊆ {f1} ∪
(
〈f1〉 + f2

)
. Moreover, since (f2, f3)

must be a basis, it follows that

gcd(x3, n) = 1.

By (11), we have

(12) ϕ(g0) + ϕ(g1) = −σ(ϕ(W0 ·W1 · g
[−1]
0 · g

[−1]
1 )) = f1 + f2 + f3 = (1 + x3)f2 + 2f2.

Observe that Σn−2(f
[n−2]
2 · f

[n−2]
3 ) = {xf1 − 2f2 : x ∈ {0, x3}+ . . . + {0, x3}︸ ︷︷ ︸n−2

}. Since

gcd(x3, n) = 1, it follows that {0, x3}+ . . .+ {0, x3}︸ ︷︷ ︸n−2

contains all residue classes modulo n ex-

cept (n−1)x3 ≡ −x3 mod n. As a result, since −1−x3 6≡ −x3 mod n, it follows from (12) that

−ϕ(g0)−ϕ(g1) ∈ Σn−2(f
[n−2]
2 · f

[n−2]
3 ), which means (recall (11)) that there is an n-term subse-

quenceW ′
1 | W0 ·W1 with g0 ·g1 | W

′
1 and ϕ(W ′

1) zero-sum. Letting W ′
0 = W0 ·W1 ·(W

′
1)

[−1], it fol-

lows that S∗ = W ′
0 ·W

′
1 ·W2 . . . . . .W2m−2+km is a block decomposition with g1 ∈ Supp(W ′

1 ·g
[−1]
0 )

and g2 ∈ Supp(W2). It now follows from Claim D, applied to this block decomposition with

k∅ = 1 and j = 2, that g1 = g2 is good, as desired. �

CASE 1. n = 2.

In this case, Supp(ϕ(S∗)) ⊆ {f1} ∪
(
〈f1〉+ f2

)
= {f1, f2, f1 + f2} with f1, f2 and f1 + f2 the

three nonzero elements of ϕ(G) = Cn ⊕Cn = C2 ⊕ C2. Claim F ensures that all terms of S are

good, so (choosing g0 ∈ g0 + kerϕ appropriately when kn = 0) we find

Supp(S∗) = {e1, e2, e1 + e2 + α}

for some e1, e2, α ∈ G with

me1 = ϕ(e1) = f1, me2 = ϕ(e2) = f2 and mα = ϕ(α) = 0.

Let S∗ = W0 · . . . ·W2m−2+km be a block decomposition with k∅ = 0 having associated sequence

Sσ =
∏•

i∈[1,2m−2+km] σ(Wi). In view of (8), we have W0 = e1 · e2 · (e1 + e2 + α) and Wi ∈

{e
[2]
1 , e

[2]
2 , (e1 + e2 + α)[2]} for i ≥ 1. Thus each term in Sσ is either equal to 2e1, 2e2 or

2e1 + 2e2 + 2α. In view of Claim B, we know Conjecture 1.1 holds for Sσ. Since all bases for

ϕ(G) = Cn⊕Cn satisfy Claim C.1 when n = 2, we can replace the basis (f1, f2) by any alternative

one. Thus we can w.l.o.g. assume Conjecture 1.1 holds for Sσ using the basis (2e1, 2e2) with

Supp(Sσ) = {2e1, 2e2, 2e1 + 2e2 + 2α}.

Suppose km = 1 < m − 1. Then m ≥ 3, k = kmn + kn ∈ {2, 3}, and Conjecture 1.1

implies that 2e1 occurs with multiplicity m− 1 in Sσ, 2e2 occurs with multiplicity x ≥ 1 in Sσ,

2e1 + 2e2 + 2α occurs with multiplicity m − x ≥ 1 in Sσ, and (2e1 + 2e2 + 2α) − 2e2 ∈ 〈2e1〉,
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whence e1 + e2 + α = ye1 + (1 +m)e2 or ye1 + e2 for some y ∈ [0, 2m− 1]. We can assume the

latter does not occur, else Lemma 2.2 yields the desired structure for S. Hence, by swapping

the basis (f1, f2) with (f1, f1 + f2) if need be, we can assume x ≥ m− x and

S∗ = e
[2m−1]
1 · e

[2x+1]
2 · (ye1 + (1 +m)e2)

[2(m−x)+1]

for some x ∈ [m2 ,m − 1] and y ∈ [0, 2m − 1]. If y = 0, then e
[m−1]
2 · (1 + m)e2 is a zero-sum

subsequence of S with length m, contrary to (6). Therefore y ≥ 1. If y ≥ 2, or kn = 1, or kn = 0

with ϕ(g0) 6= f1, then e
[2m−y]
1 · e

[m−1]
2 · (ye1 + (1+m)e2) is a nontrivial zero-sum subsequence of

S with length 3m− y ≤ 3m− 1 ≤ 4m− 4 ≤ 2mn− 1− k, contradicting (6). On the other hand,

if y = 1, kn = 0 and ϕ(g0) = f1, then e
[2m−3]
1 · e

[m−3]
2 · (e1 +(1+m)e2)

[3] is a nontrivial zero-sum

subsequence of S with length 3m− 3 ≤ 4m− 4 ≤ 2mn− 1− k, again contradicting (6). So we

can now assume either km ∈ [2,m − 1] or m = 2.

In this case, Conjecture 1.1 holding for Sσ with basis (2e1, 2e2) means 2e1 and 2e2 occur with

multiplicity m− 1 in Sσ, 2e1 + 2e2 + 2α occurs with multiplicity km in Sσ,

(13) 〈2e1 + 2α〉 = 〈2e1〉, and either 2α = 0 or km = m− 1.

Moreover, both 2α = 0 and km = m− 1 = 1 when m = 2. It follows that

S∗ = e
[2m−1]
1 · e

[2m−1]
2 · (e1 + e2 + α)[2km+1].

If H = 〈e1, e2〉 is a proper subgroup, then S contains a subsequence with two distinct terms

from H and length at least 4m − 3 ≥ η(H) − 1, and thus contains a nontrivial zero-sum of

length at most exp(H) ≤ 2m using the established Conjecture 1.1.4, contrary to (6). Therefore

H = 〈e1, e2〉 = G, forcing (e1, e2) to be a basis for G = C2m ⊕ C2m. If α ∈ 〈e1〉 or α ∈ 〈e2〉,

then Lemma 2.2 implies that S has the desired structure, completing the proof. Hence we may

assume otherwise, so in view of mα = 0 and 〈2e1 + 2α〉 = 〈2e1〉, it follows that

α = xe1 +me2 for some x ∈ [1, 2m− 1]

with m even and

ord(2(1 + x)e1) = ord(2e1 + 2α) = ord(2e1) = m.

We have two final subcases based upon which possibility occurs in (13).

Suppose km = m−1 ≥ 2. Then e1+e2+α = (1+x)e1+(1+m)e2. For r ∈ [0, m2 −1], we have

Tr := e
[m−2r−1]
2 ·((1+x)e1+(1+m)e2)

[2r+1] as a subsequence of S with sum (1+x)e1+r·2(1+x)e1.

Since ord(2(1 + x)e1) = m, it follows that {σ(Tr) : r ∈ [0, m2 − 1]} ⊆ (1 + x)e1 + [1,m]2e1 is a

subset of cardinality m
2 , so there must be some r ∈ [0, m2 − 1] such that σ(Tr) = ye1 for some

y ∈ [1, 2m] with y ≥ 2(m2 − 1) + 1 = m − 1 ≥ 2. It follows that e
[2m−y]
1 · Tr is a nontrivial

zero-sum subsequence of S with length 3m− y ≤ 2m+ 1, contradicting (6) (as k ≤ 2m− 2).

Suppose 2α = 0. Then e1+ e2+α = (1+m)e1+(1+m)e2, else Lemma 2.2 yields the desired

structure for S. If 2km − 1 ≤ m, then e
[m−2km+1]
1 · e

[m−2km+1]
2 · ((1 +m)e1 + (1 +m)e2)

2km−1 is

a nontrivial zero-sum subsequence of S with length 2m− 2km + 1 ≤ 2m− 1, contradicting (6).
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On the other hand, if 2km − 1 ≥ m+ 1, then e1 · e2 · ((1 +m)e1 + (1 +m)e2)
m−1 is a nontrivial

zero-sum subsequence of S with length m+1 ≤ 2m+1, again contradicting (6) and completing

the case.

CASE 2. n ≥ 3.

Since n ≥ 3, if S∗ = W0 ·W1 · . . . ·W2m−2+km is any block decomposition, then (8) ensures

(14) f1 ∈ Supp(ϕ(W̃0)).

Claim H. The term f1 ∈ Supp(ϕ(S)) is good.

Proof. Let S∗ = W0 ·W1 · . . . ·W2m−2+km be a block decomposition with associated index k∅ = 0.

If f1 ∈ Supp(ϕ(S ·W
[−1]
0 )), then (14) together with Claim D implies that f1 is good. Therefore

we can instead assume

(15) Supp(ϕ(S ·W
[−1]
0 )) ⊆ 〈f1〉+ f2.

We can also assume

(16) vf1(ϕ(S)) ≥ 2,

lest f1 being good holds trivially.

Let us show there are g ∈ Supp(W̃0) and h ∈ Supp(S ·W
[−1]
0 ) with ϕ(g), ϕ(h) ∈ 〈f1〉+ f2 and

ϕ(g) − ϕ(h) = zf1 for some z ∈ [2, n − 1].

Assuming this fails, let xf1 + f2 ∈ Supp(ϕ(W̃0)). Then (15) implies Supp(ϕ(S · W
[−1]
0 )) ⊆

{xf1 + f2, (x− 1)f1 + f2}. If vxf1+f2(ϕ(S)) ≥ mn > n, then the term g is good by Claim G, in

turn implying that vg(S) ≥ mn, where g ∈ Supp(S) is the unique term with ϕ(g) = xf1 + f2,

whence 0 ∈ Σmn(S), contrary to (6). Therefore we can assume vxf1+f2(ϕ(S)) ≤ mn−1, and thus

v(x−1)f1+f2(ϕ(S ·W
[−1]
0 )) ≥ (2m− 2 + km)n−mn+ 1 ≥ mn− n+ 1 > n. Claim G now ensures

that the term (x− 1)f1 + f2 is also good, and thus has multiplicity at most mn− 1 in ϕ(S) lest

we obtain the same contradiction as before. There are at least (2m−2+km)n+n−1 ≥ 2mn−1

terms of ϕ(S) from 〈f1〉+ f2. As a result, it follows that there is some x′f1+ f2 ∈ Supp(ϕ(W̃0))

with x′f1 /∈ {xf1, (x − 1)f1}. But now, taking g′ = x′f1 + f2 and h′ = (x − 1)f1 + f2 ∈

Supp(ϕ(S ·W
[−1]
0 )), we find that g′ −h′ = zf1 with z ∈ [2, n− 1], as desired. Thus the existence

of g and h is established.

Let j ∈ [1, 2m − 2 + km] be an index with h ∈ Supp(Wj). In view of (15) and (16), let

g1 · g2 | W̃0 be a length two subsequence with ϕ(g1) = ϕ(g2) = f1. Since 1 ≤ n− z ≤ n− 2 and

vf1(ϕ(W0 ·g
[−1]
2 )) = n−2, it follows that there is a subsequence T | W0 ·g

[−1]
2 with ϕ(T ) = f

[n−z]
1

and g1 ∈ Supp(T ). Since ϕ(g) ∈ 〈f1〉+ f2, we have g /∈ Supp(T ). Set

W ′
0 = W0 · T

[−1]
· g[−1]

· h and W ′
j = Wj · h

[−1]
· g · T

with W ′
i = Wi for i 6= 0, j. Then, by construction, S∗ = W ′

0 ·W
′
1 · . . . ·W

′
2m−2+km

is a weak block

decomposition with associated index k′∅ ∈ {0, j}. Moreover, g2 ∈ Supp(W̃ ′
0) and g1 ∈ Supp(W̃ ′

j)
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with ϕ(g1) = ϕ(g2) = f1. Thus applying Claim D to S∗ = W ′
0 ·W

′
1 · . . . ·W

′
2m−2+km

implies f1

is good, completing the claim. �

Let e1 ∈ Supp(S) with ϕ(e1) = f1, which exists in view of (14). By Claim H, every g ∈

Supp(S) with ϕ(g) = f1 has g = e1, and if kn = 0 with ϕ(g0) = f1 = ϕ(e1), we can choose

g0 ∈ g0 + kerϕ appropriately so that g0 = e1, thereby ensuring that every g ∈ Supp(S∗) with

ϕ(g) = f1 has g = e1.

Claim I. If g, h ∈ Supp(S) with ϕ(g), ϕ(h) ∈ 〈f1〉+ f2, then g − h ∈ 〈e1〉.

Proof. Let S∗ = W0 ·W1 · . . . ·W2m−2+km be a block decomposition with associated index k∅ = 0

and associated sequence Sσ =
∏•

i∈[1,2m−2+km] σ(Wi). Since f1 is good (by Claim H), we have

vf1(ϕ(S)) ≤ mn − 1, lest S contain an mn-term zero-sum, contrary to (6). Thus, since each

ϕ(Wi), for i ∈ [1, 2m − 2 + km], either consists of n terms equal to f1 or no terms equal to

f1 (in view of (8)), it follows that vf1(ϕ(S · W
[−1]
0 )) ≤ (m − 1)n, meaning there are at least

(2m − 2 + km − (m − 1))n ≥ mn terms of ϕ(S · W
[−1]
0 ) from 〈f1〉 + f2. These terms cannot

all be equal to each other, lest they would be good by Claim G giving rise to an element with

multiplicity at least mn in S, contradicting (6) as before. Therefore

(17) |Supp(ϕ(S ·W
[−1]
0 )) \ {f1}| ≥ 2.

For x ∈ [0, n − 1], let Lx | W̃0 be the subsequence of W̃0 consisting of all terms g with

ϕ(g) = xf1 + f2, and let Rx | S ·W
[−1]
0 be the subsequence of S ·W

[−1]
0 consisting of all terms g

with ϕ(g) = xf1 + f2. Let IL ⊆ [0, n − 1] be all those x ∈ [0, n − 1] with Lx nontrivial, and let

IR ⊆ [0, n − 1] be all those x ∈ [0, n − 1] with Rx nontrivial. By a slight abuse of notation, we

consider the subscripts on the Lx and Rx modulo n. In view of (17),

|IR| ≥ 2.

Let g ∈ Supp(W̃0) and h ∈ Supp(S ·W
[−1]
0 ) be arbitrary with ϕ(g), ϕ(h) ∈ 〈f1〉+ f2, and let

ϕ(g) − ϕ(h) = zf1 with z ∈ [1, n].

Suppose kn = 0 and ϕ(g0) 6= f1. Then e
[n−z]
1 · g | W̃0. Set W ′

0 = W0 ·
(
e
[n−z]
1 · g

)[−1]
· h,

W ′
j = Wj · h

[−1]
· e

[n−z]
1 · g and W ′

i = Wi for i 6= 0, j, where h ∈ Supp(Wj). Then S∗ =

W ′
0 ·W

′
1 · . . . . . . ·W2m−2+km is a weak block decomposition with g0 ∈ Supp(W ′

0), associated index

k′∅ = k∅ = 0 (as g ∈ Supp(W ′
0)) and associated sequence S′

σ =
∏•

i∈[1,2m−2+km] σ(W
′
i ). Note that

S′
σ is obtained from Sσ by replacing the term σ(Wj) by σ(W ′

j) = σ(Wj)− h+ g+ (n− z)e1. By

Lemma 2.1 and Claim B, we must have Sσ = S′
σ, implying σ(Wj) = σ(W ′

j) and g−h ∈ 〈e1〉. As

this is true for arbitrary g ∈ Supp(W̃0) and h ∈ Supp(S ·W
[−1]
0 ), the claim is complete in this

case, allowing us to assume kn = 1 or ϕ(g0) = f1. In particular, it now follows from (8) that

|IL| ≥ 2

(as x1 + . . .+ xn ≡ 1 mod n ensures not all xi are equal to each other).
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Suppose z ≥ 2 for g and h as before. Then e
[n−z]
1 · g | W̃0. Set W ′

0 = W0 ·
(
e
[n−z]
1 · g

)[−1]
· h,

W ′
j = Wj · h

[−1]
· e

[n−z]
1 · g and W ′

i = Wi for i 6= 0, j, where h ∈ Supp(Wj). Then S∗ =

W ′
0 ·W

′
1 · . . . . . . ·W2m−2+km is a weak block decomposition with associated index k′∅. If kn = 0,

then g0 ∈ Supp(W ′
0), ensuring k′∅ = k∅ = 0; if kn = 1, then |W ′

0| = |W0|− (n− z) ≥ n+1 follows

in view of z ≥ 2, also ensuring that k′∅ = k∅ = 0. Applying Lemma 2.1 and Claim B, we find

that g and h are from the same 〈e1〉-coset as before.

The argument from the previous paragraph shows that, for any x ∈ IL, all terms from Lx

are from the same 〈e1〉-coset as all terms from Ry, for any y 6≡ x− 1 mod n. If all terms from∏•
y∈IR

Ry are from the same 〈e1〉-coset, then each x ∈ IL would have all terms from Lx being

from the same 〈e1〉-coset as all terms from some Ry with y ∈ IR (as |IR| ≥ 2), and thus from the

same 〈e1〉-coset that contains all terms from
∏•

y∈IR
Ry. As this would be true for any x ∈ IL,

there would only be one 〈e1〉-coset containing all g ∈ Supp(S) with ϕ(g) ∈ 〈f1〉+ f2, completing

the proof of the claim. Therefore we can instead assume we need at least two 〈e1〉-cosets to

cover all terms from
∏•

y∈IR
Ry. In particular, for any x ∈ IL, we must have x − 1 ∈ IR, so

IL − 1 ⊆ IR mod n. Likewise, since |IL| ≥ 2, we can assume we need at least two 〈e1〉-cosets

to cover all terms from
∏•

x∈IL
Lx, and thus for any y ∈ IR, we have y + 1 ∈ IL, so IR + 1 ⊆ IL

mod n. It follows that |IL| = |IR| with

IR = {x− 1 : x ∈ IL} mod n.

Suppose |IR| ≥ 3. Letting x1, x2 ∈ IL be distinct, then all terms from
∏•

y∈IR\{x1−1} Ry are

from the same 〈e1〉-cost as the terms from Lx1 , while all terms from
∏•

y∈IR\{x2−1} Ry are from

the same 〈e1〉-cost as the terms from Lx2 . Since |IR| ≥ 3, there would be a common element

y ∈ IR \ {x1 − 1, x2 − 1}, forcing all terms from
∏•

y∈IR
Ry to be from the same 〈e1〉-coset, which

we just assumed was not the case. So we instead conclude that |IL| = |IR| = 2. Let

IL = {x, y} and IR = {x− 1, y − 1} mod n.

In view of (8), any Wj with j ∈ [1, 2m− 2+ km] that contains a term h with ϕ(h) ∈ 〈f1〉+ f2

must have all its terms from 〈f1〉 + f2. Thus, since |Wj | = n ≥ 3 and |IR| = 2, the Pigeonhole

Principle ensures that there are h1 · h2 | Wj with ϕ(h1) = ϕ(h2), say w.l.o.g. ϕ(h1) = ϕ(h2) =

(x − 1)f1 + f2. By definition of IL = {x, y}, there are g1 · g2 | W̃0 with ϕ(g1) = xf1 + f2 and

ϕ(g2) = yf1 + f2. Let

(18) z′ ≡ x+ y − 2(x− 1) mod n with z′ ∈ [1, n].

Suppose z′ ≥ 2. Then e
[n−z′]
1 · g1 · g2 | W̃0. Set W ′

0 = W0 · (e
[n−z′]
1 · g1 · g2)

[−1]
· h1 · h2,

W ′
j = Wj·h

[−1]
1 ·h

[−1]
2 ·e

[n−z′]
1 ·g1·g2 andW ′

i = Wi for i 6= 0, j. Then S∗ = W ′
0·W

′
1·. . . . . .·W2m−2+km

is a weak block decomposition say with associated index k′∅ and associated sequence S′
σ. If kn = 0,

then g0 ∈ Supp(W ′
0), ensuring k′∅ = k∅ = 0; if kn = 1, then |W ′

0| = |W0|− (n−z′) ≥ n+1 follows

in view of z′ ≥ 2, also ensuring that k′∅ = k∅ = 0. By Lemma 2.1 and Claim B, it follows that
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Sσ = S′
σ, and thus

(19) σ(Wj) = σ(W ′
j) = σ(Wj) + (n− z′)e1 + g1 + g2 − h1 − h2.

Since ϕ(g2) = yf1+f2 and ϕ(h2) = (x−1)f2+f2, we have g2 ∈ Supp(Ly) and h2 ∈ Supp(Rx−1),

so our previous argument ensures g2 and h2 are from the same 〈e1〉-coset, and then (19) implies

that g1 and h1 are from the same 〈e1〉-coset. Since ϕ(g1) = xf1+ f2 and ϕ(h1) = (x− 1)f2+ f2,

so g1 ∈ Supp(Lx) and h1 ∈ Supp(Rx−1), the terms from Lx are from the same 〈e1〉-coset as both

Rx−1 and Ry−1, contradicting our assumption that we need at least two 〈e1〉-cosets to cover the

terms from
∏•

z∈IR
Rz = Rx−1 ·Ry−1. So we are left to conclude z′ = 1, which by (18) means

(20) y ≡ x− 1 mod n.

Since IR = {x − 1, y − 1}, there is some j ∈ [1, 2m − 2 + km] and h ∈ Supp(Wj) with

ϕ(h) = (y − 1)f1 + f2. In view of (8), we have Supp(ϕ(Wj)) ⊆ 〈f1〉 + f2, and thus all terms

from ϕ(Wj) are either equal to (x− 1)f1 + f2 or (y − 1)f1 + f2. Since ϕ(Wj) is an n-term zero-

sum, it cannot have a term with multiplicity exactly n − 1, so there must be h1 · h2 | Wj with

ϕ(h1) = ϕ(h2) = (y − 1)f1 + f2. Repeating the argument of the previous paragraph swapping

the roles of y and x, we conclude that x ≡ y − 1 mod n. Combined with (20), it follows that

0 ≡ 2 mod n, contradicting that n ≥ 3, which concludes the claim. �

Note that any g ∈ Supp(S) with ϕ(g) 6= f1 has ϕ(g) = xf1 + f2 for some x ∈ [0, n − 1] by

Claim C.1. Thus, in view of Claims H and I, we see that Supp(S) ⊆ {e1} ∪
(
〈e1〉+ e2

)
for some

e2 ∈ Supp(S). This allow us to apply Lemma 2.2 to S to complete the proof. �

Next, we consider the case when kn ∈ [2, n − 1].

Proposition 3.2. Let m, n ≥ 2 and let k ∈ [0,mn−1] with n = kmn+kn, where km ∈ [0,m−1]

and kn ∈ [2, n− 1]. Suppose Conjecture 1.1 holds for kn in Cn ⊕Cn. Suppose either Conjecture

1.1 also holds for km in Cm ⊕ Cm, or else km ∈ [1,m − 2] and Conjecture 1.1 also holds for

km + 1 in Cm ⊕ Cm. Then Conjecture 1.1 holds for k in Cmn ⊕ Cmn.

Proof. Let G = Cmn ⊕ Cmn and let S ∈ F(G) be a sequence with

(21) |S| = 2mn− 2 + k and 0 /∈ Σ≤2mn−1−k(G).

Since km ∈ [0,m − 1] and kn ∈ [2, n − 1], we have n ≥ 3 and k = kmn + kn ∈ [2,mn − 1].

Since Conjecture 1.1 is known for k = mn− 1 (as remarked in the introduction), we can assume

k = kmn + kn ∈ [2,mn − 2]. We need to show Conjecture 1.1.3 holds for S. Let ϕ : G → G be

the multiplication by m homomorphism, so ϕ(x) = mx. Note

ϕ(G) = mG ∼= Cn ⊕ Cn and kerϕ = nG ∼= Cm ⊕ Cm.

Define a block decomposition of S to be a factorization

S = W ·W1 · . . . ·W2m−2+km
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with 1 ≤ |Wi| ≤ n and ϕ(Wi) zero-sum for each i ∈ [1, 2m − 2 + km]. Since s≤n(ϕ(G)) =

s≤n(Cn ⊕Cn) = 3n− 2 and |S| = (2m− 3 + km)n+ 3n− 2 + kn ≥ (2m− 3 + km)n+ 3n− 2, it

follows by repeated application of the definition of s≤n(ϕ(G)) that S has a block decomposition.

Claim A. If S = W · W1 · . . . · W2m−2+km is a block decomposition of S, then |Wi| = n for

all i ∈ [1, 2m − 2 + km], |W | = 2n − 2 + kn, 0 /∈ Σ≤2n−1−kn(ϕ(W )), and 0 /∈ Σ≤n−1(ϕ(S)). In

particular, Conjecture 1.1 holds for ϕ(W ).

Proof. Suppose 0 ∈ Σ≤2n−1−kn(ϕ(W )). Then there is a nontrivial subsequence W0 | W with

|W0| ≤ 2n−1−kn and ϕ(W0) zero-sum. Now σ(W0) ·σ(W1) · . . . ·σ(W2m−2+km) is a sequence of

2m−1+km terms from kerϕ ∼= Cm⊕Cm. Since s≤2m−1−km(Cm⊕Cm) = 2m−1+km, it follows

that it has a nontrivial zero-sum sequence, say
∏•

i∈I σ(Wi) for some nonempty I ⊆ [0, 2m−2+km]

with |I| ≤ 2m− 1− km. But then
∏•

i∈I Wi is a nontrivial zero-sum subsequence of S with

|
∏•

i∈I
Wi| ≤ max{|W0|, n}+ (|I| − 1)n ≤ 2n− 1− kn + (2m− 2− km)n = 2mn− 1− k,

contradicting (21). So we instead conclude that 0 /∈ Σ≤2n−1−kn(ϕ(W )).

As a result, since s≤2n−1−kn(ϕ(G)) = s≤2n−1−kn(Cn ⊕ Cn) = 2n− 1 + kn, and since |Wi| ≤ n

for all i ∈ [1, 2m − 2 + km], it follows that

2n − 2 + kn = 2mn− 2 + k − (2m− 2 + km)n ≤ |S| −
2m−2+km∑

i=1

|Wi| = |W | ≤ 2n− 2 + kn,

forcing equality to hold in our estimates, i.e., |Wi| = n for all i ∈ [1, 2m − 2 + km] and |W | =

2n− 2 + kn. If 0 ∈ Σ≤n−1(ϕ(S)), then we can find a nontrivial subsequence W ′
1 | S with ϕ(W ′

1)

zero-sum and |W ′
1| ≤ n − 1. Applying the argument used to show the existence of a block

decomposition, we obtain a block decomposition S = W ′
·W ′

1 · . . . ·W
′
2m−2+km

with |W ′
1| ≤ n−1,

contradicting what was just shown. Therefore 0 /∈ Σ≤n−1(ϕ(S)). Finally, since |W | = 2n−2+kn

and 0 /∈ Σ≤2n−1−kn(ϕ(W )) with Conjecture 1.1 holding for kn in Cn⊕Cn by hypothesis, it follows

that Conjecture 1.1 holds for ϕ(W ), completing the claim. �

Suppose

S = W ·W1 · . . . ·W2m−2+km

with each ϕ(Wi) a nontrivial zero-sum for i ∈ [1, 2m− 2 + km] and |W | ≥ n− 1 + 2kn. We call

this a weak block decomposition of S with associated sequence

Sσ = σ(W1) · . . . · σ(W2m−2+km) ∈ F(kerϕ).

Since 2n − 2 + kn ≥ n − 1 + 2kn, any block decomposition is also a weak block decomposition.

Suppose

S = W ·W0 ·W1 · . . . ·W2m−2+km

with each ϕ(Wi) a nontrivial zero-sum for i ∈ [0, 2m−2+km], |Wi| = n for all i ∈ [1, 2m−2+km],

and |W0| ≤ 3n − 1 − kn. We call this an augmented block decomposition of S. In such case,
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S = (W ·W0) ·W1 · . . . ·W2m−2+km is a block decomposition of S with associated sequence Sσ,

and we call

S̃σ = σ(W0) · Sσ = σ(W0) · σ(W1) · . . . · σ(W2m−2+km) ∈ F(kerϕ)

the associated sequence for the augmented block decomposition. Conversely, if S = W · W1 ·

. . . ·W2m−2+km is a block decomposition, then Claim A ensures that |W | = 2n− 1 + (kn − 1) =

s≤2n−kn(kerϕ) (in view of kn ≥ 1). As a result, there is a nontrivial subsequence W0 | W with

ϕ(W0) zero-sum and |W0| ≤ 2n− kn ≤ 3n− 1− kn, ensuring (W ·W
[−1]
0 ) ·W0 · . . . ·W2m−2+km

is an augmented block decomposition, showing such decompositions exist.

Claim B.

1. If S = W ·W1 · . . . ·W2m−2+km is a weak block decomposition with associated sequence

Sσ, then |Sσ| = 2m−2+km and 0 /∈ Σ≤2m−1−km(Sσ). If it is also a block decomposition,

then Conjecture 1.1 holds for Sσ.

2. If S = W · W0 · . . . · W2m−2+km is an augmented block decomposition with associated

sequence S̃σ, then |S̃σ| = 2m − 1 + km and 0 /∈ Σ≤2m−2−km(S̃σ). Moreover, if km ∈

[0,m− 2], then Conjecture 1.1 holds for S̃σ.

Proof. If S = W ·W1 · . . . ·W2m−2+km is a weak block decomposition with associated sequence

Sσ, then |Sσ| = 2m − 2 + km holds by definition. If 0 ∈ Σ≤2m−1−km(Sσ), then there is some

I ⊆ [1, 2m− 2 + km] with 1 ≤ |I| ≤ 2m− 1 + km and
∏•

i∈I σ(Wi) zero-sum. In such case, since

|Wi| ≥ n for all i ∈ [1, 2m − 2 + km] by Claim A, we find that
∏•

i∈I Wi is a nontrivial zero-sum

subsequence of S with length at most

(|S| − |W |)− (2m− 2 + km − |I|)n = 2n− 2 + kn − |W |+ |I|n

≤ 2mn− 2 + n+ kn − kmn− |W | ≤ 2mn− 1− kmn− kn = 2mn− 1− k,

with the final inequality in view of the definition of a weak block decomposition, which contra-

dicts the hypothesis 0 /∈ Σ≤2mn−1−k(S). Therefore 0 /∈ Σ≤2m−1−km(Sσ).

If S = W ·W0 · . . . ·W2m−2+km is an augmented block decomposition with associated sequence

S̃σ = σ(W0) · Sσ, then |S̃σ| = 2m − 1 + km holds by definition. If 0 ∈ Σ≤2m−2−km(S̃σ), then

there is some I ⊆ [0, 2m − 2 + km] with 1 ≤ |I| ≤ 2m − 2 − km and
∏•

i∈I σ(Wi) zero-sum.

In such case, since |Wi| = n for all i ≥ 1 and |W0| ≤ 3n − 1 − kn, we find that
∏•

i∈I Wi

is a nontrivial zero-sum subsequence of S with length at most max{|I|n, |W0| + (|I| − 1)n} ≤

3n−1−kn+(2m−3−km)n = 2mn−1−k, which contradicts the hypothesis 0 /∈ Σ≤2mn−1−k(S).

Therefore 0 /∈ Σ≤2m−2−km(S̃σ).

Suppose S = W ·W1 · . . . ·W2m−2+km is a block decomposition with associated sequence Sσ.

As noted above Claim B, there exists some W0 | W such that (W ·W
[−1]
0 ) ·W0 · . . . ·W2m−2+km

is an augmented block decomposition with associated sequence σ(W0) · Sσ. As already shown,

0 /∈ Σ≤2m−2−km(σ(W0) ·Sσ) with |σ(W0) ·Sσ| = 2m− 1+ km. By hypothesis, either Conjecture

1.1 holds for km in Cm ⊕ Cm, or else km ∈ [1,m − 2] and Conjecture 1.1 holds for km + 1 in
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Cm ⊕ Cm. In the former case, Conjecture 1.1 holds for Sσ in view of the already established

|Sσ| = 2m−2+km and 0 /∈ Σ≤2m−1−km(Sσ). In the latter case, Conjecture 1.1 holds for σ(W0)·Sσ

in view of the already established |σ(W0) · Sσ| = 2m− 1 + km and 0 /∈ Σ≤2m−2−km(Σ(W0) · Sσ),

which combined with Lemma 2.4 ensures that it does so with respect to some basis (f1, f2) with

σ(W0) = f1 + f2 and Conjecture 1.1 holding for Sσ. Thus Conjecture 1.1 holds for Sσ in both

cases.

Suppose S = W ·W0 · . . . ·W2m−2+km is an augmented block decomposition with associated

sequence S̃σ = σ(W0) · Sσ. As noted above Claim B, (W ·W0) ·W1 · . . . ·W2m−2+km is a block

decomposition of S with associated sequence Sσ. As already shown, |Sσ| = 2m − 2 + km and

0 /∈ Σ≤2m−1−km(Sσ) with Conjecture 1.1 holding for Sσ. As a result, if km ∈ [1,m − 2], then

Lemma 2.3 implies that Conjecture 1.1 holds for S̃σ. On the other hand, If km = 0, then

Conjecture 1.1 is known to hold without condition for km and km + 1 in Cm ⊕ Cm, ensuring

that Conjecture 1.1 holds for S̃σ. Thus Conjecture 1.1 holds for S̃σ in both cases, completing

the claim. �

Claim C. There exists a basis (e1, e2) for ϕ(G) such that Supp(ϕ(S)) = {e1, e2, xe1 + e2} for

some x ∈ [1, n − 1] with gcd(x, n) = 1 and either x = 1 or kn = n − 1. In particular, any

block decomposition S = W ·W1 · . . . ·W2m−2+km has ϕ(W ) = e
[n−1]
1 · e

[n−1]
2 · (xe1 + e2)

[kn] with

ϕ(Wi) ∈ {e
[n]
1 , e

[n]
2 , (xe1 + e2)

[n]} for all i ∈ [1, 2m − 2 + km].

Proof. Let S = W · W1 · . . . ·W2m−2+km be an arbitrary block decomposition. Then Claim A

ensures that Conjecture 1.1 holds for ϕ(W ), so there exists a basis (e1, e2) for ϕ(G) such that

(22) ϕ(W ) = e
[n−1]
1 · e

[n−1]
2 · (xe1 + e2)

[kn]

for some x ∈ [1, n − 1] with gcd(x, n) = 1 and either x = 1 or kn = n − 1 (as we have

kn ∈ [2, n − 1]). Since (e1, e2) is a basis and gcd(x, n) = 1, any n-term zero-sum sequence with

support contained in {e1, e2, xe1 + e2} must have support of size 1. Consequently, if we can

show that |Supp(ϕ(S))| = 3, then any block decomposition S = W ′
·W ′

1 · . . . ·W
′
2m−2+km

will

have ϕ(W ′
i ) ∈ {e

[n]
1 , e

[n]
2 , (xe1 + e2)

[n]} for all i ∈ [1, 2m − 2 + km]. Moreover, if kn = n − 1,

then Conjecture 1.1 must hold for ϕ(W ′) with Supp(ϕ(W ′)) ⊆ {e1, e2, xe1+ e2}, with each term

having multiplicity n− 1, which forces ϕ(W ′) = ϕ(W ) = e
[n−1]
1 · e

[n−1]
2 · (xe1 + e2)

[n−1], while for

kn ≤ n−2 and x = 1, Conjecture 1.1 must hold for ϕ(W ′) with Supp(ϕ(W ′)) ⊆ {e1, e2, e1+e2},

e1 + (e1 + e2) 6= e2 and e2 + (e1 + e2) 6= e1 (as n ≥ 3), ensuring that ϕ(W ′) = ϕ(W ) =

e
[n−1]
1 ·e

[n−1]
2 · (xe1+e2)

[kn]. In both cases, the claim would be complete. Thus it suffices to show

|Supp(ϕ(S))| = 3. Assume by contradiction that |Supp(ϕ(S))| > 3, meaning there is some

g ∈ Supp(S ·W
[−1]
0 ) with ϕ(g) /∈ {e1, e2, xe1 + e2} = Supp(ϕ(W )), and w.l.o.g. g ∈ Supp(W1).

Suppose there were two distinct elements from Supp(ϕ(W ·W1)) each with multiplicity at least

n in ϕ(W ·W1). Then it would be possible to re-factorize W ·W1 = W ′
·W ′

1 with |W ′
1| = |W1| = n,

with ϕ(W ′
1) a zero-sum sequence having support of size 1, and with W ′ containing a zero-sum

subsequence of length n and support 1. But then S = W ′
·W ′

1 ·W2 · . . . ·W2m−2+km would be a
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block decomposition with 0 ∈ Σ≤n(ϕ(W
′)), contrary to Claim A. So we conclude there can be

at most one term from ϕ(W ·W1) with multiplicity at least n.

Suppose vϕ(g)(ϕ(W · W1)) ≥ n − 1. Since ϕ(g) /∈ Supp(ϕ(W )), this ensures ϕ(g) has

multiplicity at least n − 1 in the n-term zero-sum sequence ϕ(W1), which is only possible if

ϕ(W1) = ϕ(g)[n]. In such case, all terms in ϕ(W · W1 · g
[−1]) have multiplicity at most n − 1.

Since we have |W · W1 · g
[−1]| = 3n − 3 + kn ≥ 3n − 1 ≥ s≤n(ϕ(G)), it follows that there is a

nontrivial subsequence W ′
1 | W · W1 · g

[−1] with ϕ(W ′
1) a zero-sum sequence of length at most

n. Setting W ′ = W ·W1 · (W
′
1)

[−1], it follows that S = W ′
·W ′

1 ·W2 · . . . ·W2m−2+km is a block

decomposition with |Supp(ϕ(W ′
· W ′

1))| = |Supp(ϕ(W · W1))| = 4 and |Supp(ϕ(W ′
1))| > 1

(as W ′
1 | W · W1 · g

[−1] with all terms of ϕ(W · W1 · g
[−1]) having multiplicity at most n − 1).

Replacing the initial block decomposition by S = W ′
·W ′

1 ·W2 · . . . ·W
′
2m−2+km

and repeating

all arguments from the start (including possibly redefining the elements e1, e2 and xe1+ e2), we

see that we can w.l.o.g. assume there is some g ∈ Supp(W1) with

ϕ(g) /∈ Supp(ϕ(W )) = {e1, e2, xe1 + e2} and vϕ(g)(ϕ(W ·W1)) ≤ n− 2.

Let g1, g2 ∈ Supp(W ) be elements with ϕ(g1) = e1 and ϕ(g2) = e2. Now we see that

W · W1 · g
[−1]
1 · g

[−1]
2 · g[−1] is a sequence of length 3n − 5 + kn ≥ 3n − 3. As a result, if

ϕ(W ·W1 · g
[−1]
1 · g

[−1]
2 · g[−1]) does not contain a zero-sum subsequence of length at most n, then

the established case of Conjecture 1.1.4 implies that Supp(ϕ(W · W1 · g
[−1]
1 · g

[−1]
2 · g[−1])) = 3

with each of these three terms occurring with multiplicity n− 1 in ϕ(W ·W1 · g
[−1]
1 · g

[−1]
2 · g[−1]).

However, since n ≥ 3, (22) ensures that e1, e2 ∈ Supp(ϕ(W ·W1 ·g
[−1]
1 ·g

[−1]
2 ·g[−1])), meaning e1

and e2 each have multiplicity n− 1 in ϕ(W ·W1 · g
[−1]
1 · g

[−1]
2 · g[−1]), whence ve1(ϕ(W ·W1)) ≥ n

and ve2(ϕ(W · W1)) ≥ n (since ϕ(g1) = e1 and ϕ(g2) = e2), contradicting that we showed

earlier that at most one term of ϕ(W · W1) can have multiplicity at least n. Therefore we

instead conclude that there is some subsequence W ′
1 | W · W1 · g

[−1]
1 · g

[−1]
2 · g[−1] with ϕ(W ′

1)

a length n zero-sum (in view of Claim A). Setting W ′ = W · W1 · (W ′
1)

[−1], we find that

S = W ′
· W ′

1 · W2 · . . . · W2m−2+km is a block decomposition with g, g1, g2 ∈ Supp(W ′) and

ϕ(g1) = e1, ϕ(g2) = e2 and ϕ(g) /∈ {e1, e2, xe1 + e2}.

Applying our initial argument in Claim C using this new block decomposition, we immediately

obtain a contradiction unless Conjecture 1.1 holds for ϕ(W ′) with Supp(ϕ(W ′)) = {e1, e2, ϕ(g)}.

If kn = n− 1, this forces each of the terms e1, e2 and ϕ(g) to have multiplicity n− 1 in ϕ(W ′),

contradicting that W ′ | W · W1 with the multiplicity of ϕ(g) in ϕ(W · W1) at most n − 2 (as

shown above). Therefore we must have kn ≤ n− 2, in which case x = 1, and then, as ϕ(g) has

multiplicity at most n− 2, the only way Conjecture 1.1 can hold for ϕ(W ′) is if it does so with

basis (e1, e2) and ϕ(g) = e1 + e2, contradicting that ϕ(g) /∈ {e1, e2, xe1 + e2} = {e1, e2, e1 + e2}.

This completes Claim C. �
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We define a term g ∈ Supp(S) to be good if g, h ∈ Supp(S) with ϕ(g) = ϕ(h) implies g = h.

A term g ∈ Supp(ϕ(S)) is good if Supp(S) contains exactly one element from ϕ−1(g). Then, for

g ∈ Supp(S), we find that ϕ(g) is good if and only if g is good.

Let (e1, e2) be an arbitrary basis for kerϕ for which Claim C holds with

(23) Supp(ϕ(S)) = {e1, e2, xe1 + e2},

where x ∈ [1, n − 1] with gcd(x, n) = 1 and either x = 1 or kn = n − 1. Let e1, e2 ∈ G

be, for the moment, arbitrary representatives for e1 and e2, so ϕ(e1) = e1, ϕ(e2) = e2 and

ϕ(xe1 + e2) = xe1 + e2. We divide the remainder of the proof into two main cases. We remark

that the cases km ∈ [1,m−2] could be handled by the methods of either CASE 1 or 2, but there

is some simplification to the arguments by including them in CASE 2.

CASE 1: km = m− 1.

We begin with the following claim.

Claim D.1. All terms g ∈ Supp(S) are good.

Proof. Let S = W ·W1 · . . . ·W2m−2+km be an arbitrary block decomposition. In view of Claim

C, let g1, g2, g3 ∈ Supp(W ) be arbitrary with ϕ(g1) = e1, ϕ(g2) = e2 and ϕ(g3) = xe1 + e2.

Let Sσ = σ(W1) · . . . · σ(W2m−2+km) be the associated sequence, which satisfies Conjecture

1.1 by Claim B. If h ∈ Supp(S · W [−1]), say h ∈ Supp(Wj), then ϕ(h) = ϕ(gk) for some

k ∈ [1, 3] by Claim C. Setting W ′ = W · g
[−1]
k · h, W ′

j = Wj · h
[−1]

· gk and W ′
i = Wi for all

i 6= j, we obtain a new block decomposition S = W ′
· W ′

1 · . . . · W ′
2m−2+km

with associated

sequence S′
σ = σ(W ′

1) · . . . · σ(W
′
2m−2+km

) also satisfying Conjecture 1.1 by Claim B. Since

km = m− 1 ≥ 1, we can then apply Lemma 2.1 to conclude that S′
σ = Sσ and σ(W ′

j) = σ(Wj).

Since σ(W ′
j) = σ(Wj) − h + gk, this forces gk = h. Ranging over all h ∈ Supp(S · W [−1]) and

gk ∈ Supp(W ) with ϕ(gk) = ϕ(h) now shows that ϕ(h) is good.

In summary, this argument shows that all terms occurring in ϕ(S · W [−1]) are good. Con-

sequently, since Claim C ensures that |Supp(ϕ(S))| = 3, the only way Claim D can fail is if

|Supp(ϕ(S ·W [−1]))| ≤ 2 with all terms in Supp(ϕ(S ·W [−1])) good. In view of Claim C, each

ϕ(Wi) with i ∈ [1, 2m−2+km] consists of a single term from {e1, e2, xe1+e2} repeated n times.

As a result, if |Supp(ϕ(S ·W [−1]))| ≤ 2, then the Pigeonhole Principle ensures that, among the

terms from the 2m−2+km = 3m−3 blocks Wi with i ∈ [1, 2m−2+km], at least ⌈3m−3
2 ⌉ ≥ m of

these blocks ϕ(Wi) must have support equal to the same element, which is then good, ensuring

that there is only a single distinct term among these blocks Wi. In such case, S has a term with

multiplicity at least mn, contradicting that 0 /∈ Σ≤2mn−1−k(S). Therefore, we instead conclude

that |Supp(ϕ(S ·W [−1]))| = 3, meaning all g ∈ Supp(S) are good as explained above. �
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Since km = m−1 and k = kmn+kn ∈ [2,mn−2], we have kn 6= n−1, meaning kn ∈ [2, n−2]

with n ≥ 4. This ensures that x = 1 in Claim C. In view of Claim D.1,

(24) Supp(S) = {e1, e2, e1 + e2 + α}

for some e1, e2 ∈ G and α ∈ kerϕ with ϕ(e1) = e1, ϕ(e2) = e2 and ϕ(e1 + e2 +α) = e1 + e2. Let

S = W ·W1 · . . . ·W2m−2+km be an arbitrary block decomposition. Then Claim C implies that

W = e
[n−1]
1 · e

[n−1]
2 · (e1 + e2 + α)[kn]

with kn ∈ [2, n−2]. Moreover, we can partition [1, 2m−2+km] = I1∪I2∪I3 with Ij consisting of

all indices i ∈ [1, 2m−2+km] such that Wi = e
[n]
j (for j ∈ [0, 1]) or such that Wi = (e1+e2+α)[n]

(for j = 3). If Ij = ∅ for some j ∈ [1, 3], then, since 2m− 2+ km ≥ 2m− 1 (as km = m− 1 ≥ 1),

the Pigeonhole Principle ensures that |Ij′ | ≥ m for some j′ ∈ [1, 3] \ {j}. In such case, S has a

term with multiplicity at least mn, contradicting that 0 /∈ Σ≤mn(S) by hypothesis. Therefore

we may assume each Ij for j ∈ [1, 3] is nonempty.

Since I3 6= ∅, let j ∈ I3. Set W
′ = W ·e

[−1]
1 ·e

[−1]
2 ·(e1+e2+α), W ′

j = Wj ·(e1+e2+α)[−1]
·e1 ·e2,

and W ′
i = Wi for all i 6= j. Since |W ′| = |W | − 1 = 2n − 3 + kn ≥ n − 1 + 2kn (in view of

kn ∈ [2, n − 2]), we see that S = W ′
·W ′

1 · . . . ·W
′
2m−2+km

is a weak block decomposition with

associated sequence S′
σ = σ(W ′

1) · . . . · σ(W
′
2m−2+km

). Since Conjecture 1.1 is known to always

hold for km = m− 1, it follows in view of Claim B that Conjecture 1.1 holds for S′
σ. As a result,

since the sequence S′
σ is obtained from Sσ by replacing the term σ(Wj) by σ(W ′

j) = σ(Wj)−α,

and since Conjecture 1.1 holds for Sσ by Claim B, we can apply Lemma 2.1 (as km = m−1 ≥ 1)

to conclude α = 0. But now Supp(S) ⊆ {e1, e2, e1 + e2} by (24), so applying Lemma 2.2 yields

the desired structure for S, completing CASE 1.

CASE 2: km ∈ [0,m− 2].

Let S = W ·W1 · . . . ·W2m−2+km be an arbitrary block decomposition with associated sequence

Sσ. Then Claim C implies that

(25) ϕ(W ) = e
[n−1]
1 · e

[n−1]
2 · (xe1 + e2)

[kn]

with kn ∈ [2, n − 1], with x ∈ [1, n − 1] and gcd(x, n) = 1, and with either x = 1 or kn = n− 1.

Since n ≥ 3 (as noted at the start of the proof), x = n − 1 is only possible if kn = n − 1, in

which case Claim C also holds replacing the basis (f1, f2) by (f1, xf1 + f2) = (f1,−f1 + f2)

with f2 = f1 + (xf1 + f2). In such case, by using this alternative basis in Claim C, we obtain

x = 1 < n− 1. This allows us to w.l.o.g. assume x ∈ [1, n− 2] with gcd(x, n) = 1.

If x = 1, then (25) and kn ∈ [2, n − 1] ensures that there are sequences U0 | W and V0 | W

with

ϕ(U0) = e
[n−kn]
1 · e

[n−kn]
2 · (e1 + e2)

[kn] and ϕ(V0) = e
[n−kn+1]
1 · e

[n−kn+1]
2 · (e1 + e2)

[kn−1].
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Since kn ∈ [2, n − 1], we find that

Supp(ϕ(U0)) = Supp(ϕ(V0)) = {e1, e2, e1 + e2},(26)

e1, e2 ∈ Supp(ϕ(W · U
[−1]
0 )) and e1 + e2 ∈ Supp(ϕ(W · V

[−1]
0 )).(27)

On the other hand, if x 6= 1, then x ∈ [2, n − 2] with gcd(x, n) = 1, n ≥ 5 and kn = n − 1. In

such case, let x∗ ∈ [2, n − 2] be the multiplicative inverse of −x, so

xx∗ ≡ −1 mod n.

In this case, in view of (25) and n ≥ 5, there is a sequence W0 | W with

ϕ(W0) = e1 · e
[n−x∗]
2 · (xe1 + e2)

[x∗].

In view of x∗ ∈ [2, n − 2] and kn = n− 1, we have

Supp(ϕ(W0)) = Supp(ϕ(W ·W
[−1]
0 )) = {e1, e2, xe1 + e2} and(28)

ve1(ϕ(W ·W
[−1]
0 )) = n− 2 ≥ x.(29)

Since |W0| = n+ 1, |U0| = 2n− kn and |V0| = 2n− kn + 1 are all at most 3n − 1− kn (in view

of n ≥ 2 and kn ≤ n − 1 ≤ 2n − 2), it follows that S = (W ·W
[−1]
0 ) ·W0 ·W1 . . . ·W2m−2+km ,

S = (W · U
[−1]
0 ) · U0 · W1 . . . · W2m−2+km and S = (W · V

[−1]
0 ) · V0 · W1 . . . · W2m−2+km are

each augmented block decompositions of S (when they are defined), with respective associated

sequences σ(W0) · Sσ, σ(U0) · Sσ, and σ(V0) · Sσ. In view of Claim B and the case hypothesis

km ∈ [0,m − 2], Conjecture 1.1 holds for all of these associated sequences.

We continue with the following claim.

Claim D.2. All terms g ∈ Supp(S) are good.

Proof. Suppose x 6= 1. Consider the augmented block decomposition S = (W · W
[−1]
0 ) · W0 ·

W1 . . .·W2m−2+km . Then (28) ensures that there are g1, g2, g2 ∈ Supp(W ·W
[−1]
0 ) with ϕ(g1) = e1,

ϕ(g2) = e2 and ϕ(g3) = xe1 + e2. Taking an arbitrary g ∈ Supp(W0 · . . . · W2m−2+km) and

exchanging g with gj , where gj with j ∈ [1, 3] is the element with ϕ(gj) = ϕ(g), results in a new

augmented block decomposition. Applying Lemma 2.1, we find that the associated sequence

for the new block decomposition must equal that of the original one, forcing g = gj . Ranging

over all possible gj ∈ Supp(W ·W
[−1]
0 ) and g ∈ Supp(W0 · . . . ·W2m−2+km) with ϕ(g) = ϕ(gj),

it follows that g is good. This shows that all terms from W0 · . . . ·W2m−2+km are good, and in

view of (28), each possible term e1, e2 and xe1 + e2 occurs in ϕ(W0 · . . . ·W2m−2+km), ensuring

that every g ∈ Supp(S) is good.

Next suppose x = 1. Repeating the above argument using the augmented block decomposition

S = (W ·U
[−1]
0 ) ·U0 ·W1 . . . ·W2m−2+km in place of S = (W ·W

[−1]
0 ) ·W0 ·W1 . . . ·W2m−2+km , and

using (27) and (26) in place of (28) shows that e1 and e2 are both good. Repeating the above

argument using the augmented block decomposition S = (W · V
[−1]
0 ) · V0 ·W1 . . . ·W2m−2+km in

place of S = (W ·W
[−1]
0 ) ·W0 ·W1 . . . ·W2m−2+km , and using (27) and (26) in place of (28) shows
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that e1 + e2 is good. As Supp(ϕ(S)) = {e1, e2, e1 + e2}, this ensures that all terms g ∈ Supp(S)

are good. �

In view of Claim D.2, there are e1, e2 ∈ G and α ∈ kerϕ such that

Supp(S) = {e1, e2, xe1 + e2 + α}

with ϕ(e1) = e1, ϕ(e2) = e2 and ϕ(e1 + e2 + α) = xe1 + e2.

Suppose x 6= 1. Then (28) and (29) ensure that there is a subsequence T | W · W
[−1]
0 with

T = e
[x]
1 ·e2. In view of (28), we have xe2+e3+α ∈ Supp(W0), so setW

′
0 = W0·(xe1+e2+α)[−1]

·T .

Since |W ′
0| = |W0| + x = n + 1 + x ≤ 2n = 3n − 1 − kn, it follows that (W · (W ′

0)
[−1]) · W ′

0 ·

W1 · . . . · W2m−2+km is an augmented block decomposition with associated sequence satisfying

Conjecture 1.1 by Claim B. Applying Lemma 2.1, we find that the associated sequence for the

new block decomposition must equal that of the original one, which is only possible if α = 0.

We now have Supp(S) = {e1, e2, xe1+e2+α} = {e1, e2, xe1+e2}, so applying Lemma 2.2 yields

the desired structure for S.

Next Suppose x = 1. Then (27) ensures that there is a subsequence T | W · U
[−1]
0 with T =

e1 ·e2. In view of (26), we have e1+e2+α ∈ Supp(U0), so set U ′
0 = U0 ·(e1+e2+α)[−1]

·T . Since

|U ′
0| = |U0|+1 = 2n−kn+1 ≤ 3n−1−kn, it follows that (W ·(U ′

0)
[−1])·U ′

0 ·W1 ·. . . ·W2m−2+km is

an augmented block decomposition with associated sequence satisfying Conjecture 1.1 by Claim

B. Applying Lemma 2.1, we find that the associated sequence for the new block decomposition

must equal that of the original one, which is only possible if α = 0. As before, we now have

Supp(S) = {e1, e2, e1 + e2 + α} = {e1, e2, e1 + e2}, so applying Lemma 2.2 yields the desired

structure for S, which completes CASE 2 and the proof. �

Proof of Theorem 1.2. Theorem 1.2 follows directly from Propositions 3.1 and 3.2 �

We conclude the paper by giving the short proofs of Corollaries 1.3, 1.4 and 1.5.

Proof of Corollary 1.3. It suffices in view of Theorem 1.2 to know Conjecture 1.1 holds for all

k ∈ [0, p − 1] in G = Cp ⊕ Cp, for p ∈ {2, 3, 5, 7}. As noted in the introduction, Conjecture 1.1

is known for k ≤ 1, k = p− 1 and k ∈ [2, 2p+1
3 ] in Cp ⊕Cp with p prime. Since, p− 2 ≤ 2p+1

3 for

p ≤ 7, this means Conjecture 1.1 is known for all k ∈ [0, p − 1] in Cp ⊕ Cp for p ≤ 7 prime, as

required. �

Proof of Corollary 1.4. In view of Corollary 1.3, we can assume n ≥ 11. As noted in the intro-

duction, Conjecture 1.1 is known for k ≤ 2n+1
3 in a p-group Cn⊕Cn provided p ∤ k and n ≥ 5. It

remains to show Conjecture 1.1 holds for k = rp with r ∈ [1, 2n+1
3p ]. If n = p, there is nothing to

show, so we assume n = ps with s ≥ 2, and proceed by induction on s with the base s = 1 of the

induction complete. We have rp = k ≤ 2ps+1
3 , ensuring that r ≤ 2ps−1+1

3 . Thus, by induction

hypothesis, Conjecture 1.1 holds for r in Cps−1 ⊕ Cps−1 , while Conjecture 1.1 holds in general

for kp := 0 in Cp ⊕ Cp (as noted in the introduction). As a result, Theorem 1.2 (applied with
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n = p and m = ps−1) implies that Conjecture 1.1 holds for k = rp in Cps ⊕Cps , completing the

induction and the proof. �

Proof of Corollary 1.5. Write n = bd with b and d proper nontrivial divisors of n. As noted in

the introduction, Conjecture 1.1 holds for k = d − 1 and for k = 1 in Cd ⊕ Cd; if b = 2, then

Conjecture 1.1 holds for k = b − 2 = 0 in Cb ⊕ Cb; and if b ≥ 3, then Conjecture 1.1 holds for

k+ 1 = b− 1 in Cb ⊕Cb. In both of the latter two cases, since d− 1 ≥ 1, applying Theorem 1.2

using n = d and m = b shows that Conjecture 1.1 holds for k = n− d− 1 = (b− 2)d+ (d− 1) in

Cbd ⊕Cbd = Cn ⊕Cn, and applying Theorem 1.2 using n = d and m = b shows that Conjecture

1.1 holds for k = n− 2d+ 1 = (b− 2)d+ 1 in Cbd ⊕ Cbd = Cn ⊕ Cn, as desired. �
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