A Multiplicative Property for Zero-Sums II

David J. Grynkiewicz Chao Liu
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
diambri@hotmail.com chaoliuac@gmail.com

Submitted: Dec 14, 2021; Accepted: May 22, 2022; Published: Jul 15, 2022
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

For $n \geqslant 1$, let C_{n} denote a cyclic group of order n. Let $G \cong C_{n} \oplus C_{m n}$ with $n \geqslant 2$ and $m \geqslant 1$, and let $k \in[0, n-1]$. It is known that any sequence of $m n+n-1+k$ terms from G must contain a nontrivial zero-sum of length at most $m n+n-1-k$. The associated inverse question is to characterize those sequences with maximal length $m n+n-2+k$ that fail to contain a nontrivial zero-sum subsequence of length at most $m n+n-1-k$. For $k \leqslant 1$, this is the inverse question for the Davenport Constant. For $k=n-1$, this is the inverse question for the $\eta(G)$ invariant concerning short zero-sum subsequences. For $C_{n} \oplus C_{n}$ and $k \in[2, n-2]$, with $n \geqslant 5$ prime, it was conjectured in a paper of Grynkiewicz, Wang and Zhao that they must have the form $S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(e_{1}+e_{2}\right)^{[k]}$ for some basis $\left(e_{1}, e_{2}\right)$, with the conjecture established in many cases and later extended to composite moduli n. In this paper, we focus on the case $m \geqslant 2$. Assuming the conjectured structure holds for $k \in[2, n-2]$ in $C_{n} \oplus C_{n}$, we characterize the structure of all sequences of maximal length $m n+n-2+k$ in $C_{n} \oplus C_{m n}$ that fail to contain a nontrivial zero-sum of length at most $m n+n-1-k$, showing they must either have the form $S=e_{1}^{[n-1]} \cdot e_{2}^{[s n-1]} \cdot\left(e_{1}+e_{2}\right)^{[(m-s) n+k]}$ for some $s \in[1, m]$ and basis $\left(e_{1}, e_{2}\right)$ with $\operatorname{ord}\left(e_{2}\right)=m n$, or else have the form $S=g_{1}^{[n-1]} \cdot g_{2}^{[n-1]} \cdot\left(g_{1}+g_{2}\right)^{[(m-1) n+k]}$ for some generating set $\left\{g_{1}, g_{2}\right\}$ with $\operatorname{ord}\left(g_{1}+g_{2}\right)=m n$. In view of prior work, this reduces the structural characterization for a general rank two abelian group to the case $C_{p} \oplus C_{p}$ with p prime. Additionally, we give a new proof of the precise structure in the case $k=n-1$ for $m=1$. Combined with known results, our results unconditionally establish the structure of extremal sequences in $G \cong C_{n} \oplus C_{m n}$ in many cases, including when n is only divisible by primes at most 7 , when $n \geqslant 2$ is a prime power and $k \leqslant \frac{2 n+1}{3}$, or when n is composite and $k=n-d-1$ or $n-2 d+1$ for a proper, nontrivial divisor $d \mid n$.

Mathematics Subject Classifications: 11B75

1 Introduction and Preliminaries

Regarding combinatorial notation for sequences and subsums, we utilize the standardized system surrounding multiplicative strings as outlined in the references [15] [14] [19]. For the reader new to this notational system, we begin with a self-contained review.

Notation

All intervals will be discrete, so for $x, y \in \mathbb{Z}$, we have $[x, y]=\{z \in \mathbb{Z}: x \leqslant z \leqslant y\}$. For integers x and n with $n \geqslant 1$, let $(x)_{n} \in[0, n-1]$ denote the least non-negative representative for x modulo n. We use C_{n} to denote a cyclic group of order n. A finite abelian group G has the form $G \cong C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $1<n_{1}|\ldots| n_{r}$, where $n_{r}=\exp (G)$ is the exponent and $r \geqslant 0$ is the rank of G, which is the minimal cardinality of a generating set for G. For $r \leqslant 2$, an arbitrary rank at most two abelian group has the form $G \cong C_{n} \oplus C_{m n}$ with $n, m \geqslant 1$. When $n \geqslant 2$, so the rank $r=2$, a (ordered) basis for G is a pair (e_{1}, e_{2}) of elements $e_{1}, e_{2} \in G$ such that $G=\left\langle e_{1}\right\rangle \oplus\left\langle e_{2}\right\rangle \cong C_{n} \oplus C_{m n}$.

Let G be an abelian group. In the tradition of Combinatorial Number Theory, a sequence of terms from G is a finite, unordered string of elements from G. We let $\mathcal{F}(G)$ denote the free abelian monoid with basis G, which consists of all (finite and unordered) sequences S of terms from G written as multiplicative strings using the boldsymbol •. This means a sequence $S \in \mathcal{F}(G)$ has the form

$$
S=g_{1} \cdots \cdots g_{\ell}
$$

with $g_{1}, \ldots, g_{\ell} \in G$ the terms in S. Then

$$
\mathrm{v}_{g}(S)=\left|\left\{i \in[1, \ell]: g_{i}=g\right\}\right|
$$

denotes the multiplicity of the terms g in S, allowing us to represent a sequence S as

$$
S=\prod_{g \in G}^{\bullet} g^{\left[\mathrm{v}_{g}(S)\right]}
$$

where $g^{[n]}=\underbrace{g \cdots \cdots g}_{n}$ denotes a sequence consisting of the term $g \in G$ repeated $n \geqslant 0$ times. The maximum multiplicity of a term of S is the height of the sequence, denoted

$$
\mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S): g \in G\right\}
$$

The support of the sequence S is the subset of all elements of G that are contained in S, that is, that occur with positive multiplicity in S, which is denoted

$$
\operatorname{Supp}(S)=\left\{g \in G: \operatorname{v}_{g}(S)>0\right\}
$$

The length of the sequence S is

$$
|S|=\ell=\sum_{g \in G} \mathrm{v}_{g}(S) .
$$

A sequence $T \in \mathcal{F}(G)$ with $\mathrm{v}_{g}(T) \leqslant \mathrm{v}_{g}(S)$ for all $g \in G$ is called a subsequence of S, denoted $T \mid S$, and in such case, $S \cdot T^{[-1]}=T^{[-1]} \cdot S$ denotes the subsequence of S obtained by removing the terms of T from S, so $\mathrm{v}_{g}\left(S \cdot T^{[-1]}\right)=\mathrm{v}_{g}(S)-\mathrm{v}_{g}(T)$ for all $g \in G$.

Since the terms of S lie in an abelian group, we have the following notation regarding subsums of terms from S. We let

$$
\sigma(S)=g_{1}+\cdots+g_{\ell}=\sum_{g \in G} \mathrm{v}_{g}(S) g
$$

denote the sum of the terms of S and call S a zero-sum sequence when $\sigma(S)=0$. A minimal zero-sum sequence is a zero-sum sequence that cannot have its terms partitioned into two proper, nontrivial zero-sum subsequences. For $n \geqslant 0$, let

$$
\begin{aligned}
& \Sigma_{n}(S)=\left\{\sigma(T): T|S,|T|=n\}, \quad \Sigma_{\leqslant n}(S)=\{\sigma(T): T|S, 1 \leqslant|T| \leqslant n\}, \quad \text { and }\right. \\
& \Sigma(S)=\{\sigma(T): T|S,|T| \geqslant 1\}
\end{aligned}
$$

denote the variously restricted collections of subsums of S. The sequence S is zero-sum free if $0 \notin \Sigma(S)$. Finally, if $\varphi: G \rightarrow G^{\prime}$ is a map, then

$$
\varphi(S)=\varphi\left(g_{1}\right) \cdots \cdots \varphi\left(g_{\ell}\right) \in \mathcal{F}\left(G^{\prime}\right)
$$

denotes the sequence of terms from G^{\prime} obtained by applying φ to each term from S.

Background

Let G be a finite abelian group. The Davenport Constant for G is the minimal integer $\mathrm{D}(G)$ such that any sequence of terms from G with length at least $\mathrm{D}(G)$ must contain a nontrivial zero-sum subsequence. Equivalently, $\mathrm{D}(G)$ is the maximal length of a minimal zero-sum sequence (see [21] [14]). Besides being of interest as an independent topic in Combinatorial Number Theory, it also plays an important role when studying factorization in Krull Domains and, more generally, in (Transfer) Krull Monoids. See [14] [15]. For a general rank at most two abelian group $G \cong C_{n} \oplus C_{m n}$, where $m, n \geqslant 1$, we have [14, Theorem 5.8.3]

$$
\mathrm{D}\left(C_{n} \oplus C_{m n}\right)=m n+n-1 .
$$

This is a classical result of Olson [25] or van Emde Boas and Kruyswijk [6] whose proof requires the constant $\eta(G)$, defined as the minimal length such that any sequence of terms from G with length at least $\eta(G)$ contains a nontrivial zero-sum subsequence of length at most $\exp (G)$. For rank at most two groups, we have [25] [6] [14, Theorem 5.8.3]

$$
\eta\left(C_{n} \oplus C_{m n}\right)=m n+2 n-2 .
$$

Specializing a particular case of a more general invariant [3] [13], Delorme, Ordaz and Quiroz introduced [4] the constant $\mathbf{s}_{\leqslant \ell}(G)$ defined as the minimal length such that

$$
|S| \geqslant \mathrm{s}_{\leqslant \ell}(G) \quad \text { implies } \quad 0 \in \Sigma_{\leqslant \ell}(S) .
$$

For connections with Coding Theory, see [3]. The constant $\mathbf{s}_{\leqslant \ell}(G)$ has also been studied in various other contexts [7] [29] [11].

Since $\mathbf{s}_{\leqslant \ell}(G)=\infty$ for $\ell<\exp (G)$ and coincides with the invariants $\eta(G)$ and $\mathrm{D}(G)$ for the values $\ell=\exp (G)$ and $\ell=\mathrm{D}(G)$, it may be viewed as a means of interpolating these constants as $\ell \in[\exp (G), \mathrm{D}(G)]$. For the case of rank two groups, Chunlin Wang and Kevin Zhao determined its exact value [32]:

$$
\mathbf{s}_{\leqslant m n+n-1-k}\left(C_{n} \oplus C_{m n}\right)=m n+n-1+k, \quad \text { for } k \in[0, n-1] .
$$

The associated inverse question is to characterize all extremal sequences of maximal length $m n+n-2+k$ with $0 \notin \Sigma_{\leqslant m n+n-1-k}(S)$. For $k=0$, this means characterizing all zerosum free sequences of maximal length $m n+n-2=\mathrm{D}(G)-1$. For $k=1$, this means characterizing all minimal zero-sum sequences of maximal length $m n+n-1=\mathrm{D}(G)$. For $k=n-1$, this means characterizing all extremal sequences of length $m n+2 n-3=\eta(G)-1$ with $0 \notin \Sigma_{\leqslant m n}(S)$. The precise structure in all three of these cases is known.

For $k \leqslant 1$, this was an involved undertaking achieved by combining the individual results of Gao, Geroldinger, Grynkiewicz, Reiher and Schmid from [8] [10] [31] [20] [28] with the numerical verification of the case when $m=1$ and $n=9$ [2]. This characterization has since proved quite useful, being employed in the proofs of several other results, e.g., [1] [12] [16] [17] [26] [30] [27].

For $k=n-1$, this was accomplished by Schmid [30]. For simplicity, we assume $m=1$ in the following discussion. The group $G \cong C_{n} \oplus C_{n}$ has Property C if every sequence S with $|S|=\eta(G)-1=3 n-3$ and $0 \notin \Sigma_{\leqslant n}(S)$ must have the form $S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot e_{3}^{[n-1]}$. It was shown in [9] that, assuming Conjecture 1 holds for $k=1$ in G (meaning, assuming the structure of minimal zero-sums of length $2 n-1$ were known), then Property C holds for G. Once this case in Conjecture 1 was resolved (as described above), this meant Property C was established without condition. However, it was a surprisingly nontrivial question to determine which $e_{1}, e_{2}, e_{3} \in G$ would give rise to a sequence $S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot e_{3}^{[n-1]}$ with $0 \notin \Sigma_{\leqslant n}(S)$. For $n=p$ prime, a derivation of the precise characterization from Property C can be found in [5], and the derivation of the precise characterization from Property C in the general case (when n may be composite) follows as a particular case of a more general result of Schmid [30]. The exact formulation is stated in Conjecture 1.4. In Section 2, we give a short alternative proof of this case, deriving the precise characterization given in Conjecture 1.4 from Property C using the arguments from [22].

The structure of sequences S of terms from $C_{n} \oplus C_{n}$ with $|S|=2 n-2+k$ but $0 \notin \Sigma_{\leqslant 2 n-1-k}(S)$ was studied in [23] [21] for $k \in[2, n-2]$. In [23], the case when n is prime and $k \leqslant \frac{2 n+1}{3}$ was resolved, showing all such sequences must have the form

$$
S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(e_{1}+e_{2}\right)^{[k]}
$$

for some basis $\left(e_{1}, e_{2}\right)$ for $G \cong C_{n} \oplus C_{n}$. It was conjectured in [23] [32] that this should also hold for $k \in[2, n-2]$ (we remark that the conjecture appeared in an earlier submitted version of [23] authored only by Wang and Zhao), and the results of [21] extended this conjecture to general n as follows, where we incorporate the already established cases $k \leqslant 1$ and $k=n-1$ into the statement.

Conjecture 1. Let $n \geqslant 2$, let $G \cong C_{n} \oplus C_{n}$, let $k \in[0, n-1]$, and let S be a sequence of terms from G with

$$
|S|=2 n-2+k \quad \text { and } \quad 0 \notin \Sigma_{\leqslant 2 n-1-k}(S) .
$$

Then there exists a basis $\left(e_{1}, e_{2}\right)$ for G such that the following hold.

1. If $k=0$, then $S \cdot g$ satisfies Item 2, where $g=-\sigma(S)$.
2. If $k=1$, then $S=e_{1}^{[n-1]} \cdot \prod_{i \in[1, m n]}^{\bullet}\left(x_{i} e_{1}+e_{2}\right)$, for some $x_{1}, \ldots, x_{m n} \in[0, n-1]$ with $x_{1}+\cdots+x_{m n} \equiv 1 \bmod n$.
3. If $k \in[2, n-2]$, then $S=e_{1}^{[n-1]} \cdot e_{2}^{[s n-1]} \cdot\left(e_{1}+e_{2}\right)^{[(m-s) n+k]}$, for some $s \in[1, m]$.
4. If $k=n-1$, then $S=e_{1}^{[n-1]} \cdot e_{2}^{[s n-1]} \cdot\left(x e_{1}+e_{2}\right)^{[(m-s) n+n-1]}$, for some $s \in[1, m]$ and $x \in[1, n-1]$ with $\operatorname{gcd}(x, n)=1$.

In [21], a multiplicative property for the conjecture was established, showing that, if the structure from Conjecture 1 holds for k_{m} in $C_{m} \oplus C_{m}$ and for k_{n} in $C_{n} \oplus C_{n}$, where $k_{m} \in[0, m-1]$ and $k_{n} \in[0, n-1]$, then Conjecture 1 also holds for $k=k_{m} n+k_{n}$ in $C_{m n} \oplus C_{m n}$. This reduced the characterization problem in $C_{n} \oplus C_{n}$ to the case when n is prime.

The characterization in the case $C_{n} \oplus C_{m n}$ with $m \geqslant 2$, even including a precise statement of the potential structure for sequences of length $m n+n-2+k$ avoiding a nontrivial zero-sum of length at most $m n+n-1-k$, was completely open apart from the boundary cases $k \leqslant 1$ and $k=n-1$. Our main result is Theorem 2.1, which fully determines the structure of S for k in $C_{n} \oplus C_{m n}$ assuming Conjecture 1 holds for k in $C_{n} \oplus C_{n}$, as follows. Note, Theorem 2.2, handling the case $k=n-1$, is due to Schmid [30] and is incorporated into the statement of Theorem 2 for completeness.

Theorem 2. Let $m \geqslant 1$, let $n \geqslant 3$, let $G \cong C_{n} \oplus C_{m n}$, let $k \in[2, n-1]$ and let S be a sequence of terms from G with

$$
|S|=m n+n-2+k \quad \text { and } \quad 0 \notin \Sigma_{\leqslant m n+n-1-k}(S) .
$$

If Conjecture 1 holds for k in $C_{n} \oplus C_{n}$, then there exists a basis $\left(e_{1}, e_{2}\right)$ for G with $\operatorname{ord}\left(e_{2}\right)=m n$ or a generating set $\left\{g_{1}, g_{2}\right\}$ for G with $\operatorname{ord}\left(g_{1}+g_{2}\right)=m n$ such that the following hold.

1. If $k \in[2, n-2]$, then either
(a) $S=e_{1}^{[n-1]} \cdot e_{2}^{[s n-1]} \cdot\left(e_{1}+e_{2}\right)^{[(m-s) n+k]}$, for some $s \in[1, m]$, or
(b) $S=g_{1}^{[n-1]} \cdot g_{2}^{[n-1]} \cdot\left(g_{1}+g_{2}\right)^{[(m-1) n+k]}$.
2. If $k=n-1$, then either
(a) $S=e_{1}^{[n-1]} \cdot e_{2}^{[s n-1]} \cdot\left(x e_{1}+e_{2}\right)^{[(m-s) n+n-1]}$, for some $s \in[1, m]$ and $x \in[1, n-1]$ with $\operatorname{gcd}(x, n)=1$, or

$$
\text { (b) } S=g_{1}^{[n-1]} \cdot g_{2}^{[n-1]} \cdot\left(g_{1}+g_{2}\right)^{[(m-1) n+n-1]} \text {. }
$$

Theorem 2 reduces the characterization in a general rank two abelian group to the case $C_{n} \oplus C_{n}$, which in turn is reduced to the case $C_{p} \oplus C_{p}$ with $p \geqslant 11$ prime by the results of [21]. The reduction to the case $C_{n} \oplus C_{n}$ is the main aim of the paper and emulates the strategy successfully used to characterize the extremal sequences for the Davenport Constant (the case $k \leqslant 1$), where the characterization problem was reduced to case $C_{n} \oplus C_{n}$ by Schmid [31] and resolved in this case by the results from [8] [10] [20] [28] (as well as the case $n=9$ [2]). However, combining Theorem 2 with known cases in Conjecture 1 yields many group $C_{n} \oplus C_{m n}$ where the structure of extremal sequences is determined here without restriction. As several examples, we list the following corollaries.

Corollary 3. If $m \geqslant 1$ and $n=2^{s_{1}} 3^{s_{2}} 5^{s_{3}} 7^{s_{4}} \geqslant 2$ with $s_{1}, s_{2}, s_{3}, s_{4} \geqslant 0$, then the conclusion of Theorem 2 holds in $C_{n} \oplus C_{m n}$ for all $k \in[2, n-1]$.

Corollary 4. For any prime power $n \geqslant 2$ and $m \geqslant 1$, the conclusion of Theorem 2 holds in $C_{n} \oplus C_{m n}$ for all $2 \leqslant k \leqslant \frac{2 n+1}{3}$.

Corollary 5. For $n \geqslant 4$ composite, $m \geqslant 1$ and $d \mid n$ a proper, nontrivial divisor, the conclusion of Theorem 2 holds in $C_{n} \oplus C_{m n}$ when $k=n-d-1 \geqslant 2$ or $k=n-2 d+1 \geqslant 2$.

2 The case $k=n-1$

As noted in the introduction, Conjecture 1 holding for $k=1$ in $G \cong C_{n} \oplus C_{n}$ implies that Property C holds for G, meaning any sequence S of $3 n-3$ terms from $G \cong C_{n} \oplus C_{n}$ with $0 \notin \Sigma_{\leqslant n}(S)$ must have the form $S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot e_{3}^{[n-1]}$ for some distinct $e_{1}, e_{2}, e_{3} \in G$. The goal of this section is to give a new proof of the characterization of which elements $e_{1}, e_{2}, e_{3} \in G$ result in a sequence $S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot e_{3}^{[n-1]}$ with $0 \notin \Sigma_{\leqslant n}(S)$. Clearly, $0 \notin \Sigma_{\leqslant n}(S)$ ensures $\operatorname{ord}\left(e_{1}\right)=\operatorname{ord}\left(e_{2}\right)=\operatorname{ord}\left(e_{3}\right)=n$. Thus there is some $f_{1} \in G$ such that $\left(f_{1}, e_{2}\right)$ is a basis for G. Letting $e_{1}=x f_{1}+y e_{2}$, we see that $\left(e_{1}, e_{2}\right)$ is a basis for G unless $\operatorname{gcd}(x, n):=n / h>1$. However, if this were the case, then $T=e_{1}^{[h]} \cdot e_{2}^{[x h]}$ is a zero-sum subsequence of S for some $x \in\left[0, \frac{n}{h}-1\right]$ having length $|T|=h+x h \leqslant n$, contradicting that $0 \notin \Sigma_{\leqslant n}(S)$. Therefore (e_{1}, e_{2}) is a basis for G, and likewise (e_{1}, e_{3}) and $\left(e_{2}, e_{3}\right)$ must also be bases for G. However, obtaining further restriction on e_{1}, e_{2} and e_{3} is much less trivial. We begin with the following lemma showing how the characterization is related to a statement involving the index (see [22]) of the sequence $\left(-x_{1}\right) \cdot\left(-x_{2}\right) \cdot 1$, where $e_{3}=x_{1} e_{1}+x_{2} e_{2}$, and continue afterwards with a series of lemmas modifying slightly the main line of argument for the prime case from [22]

Lemma 6. Let $G \cong C_{n} \oplus C_{n}$ with $n \geqslant 2$. Suppose $\left(e_{1}, e_{2}\right)$ is a basis for G and $S=$ $e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot\left(x_{1} e_{1}+x_{2} e_{2}\right)^{[n-1]}$, where $x_{1}, x_{2} \in[0, n-1]$. Then $0 \notin \Sigma_{\leqslant n}(S)$ if and only if $\left(-x_{1} k\right)_{n}+\left(-x_{2} k\right)_{n}+(k)_{n}>n$ for every $k \in[1, n-1]$.
Proof. Consider an arbitrary zero-sum subsequence T of S and then let $T=e_{1}^{\left[k_{1}\right]} \cdot e_{2}^{\left[k_{2}\right]} \cdot$ $\left(x_{1} e_{1}+x_{2} e_{2}\right)^{[k]}$, where $k_{1}, k_{2}, k \in[0, n-1]$. Note we cannot have $k=0$ (assuming T
nontrivial) as $\left(e_{1}, e_{2}\right)$ is a basis, so $k \in[1, n-1]$. Then we have $k_{1}=\left(-x_{1} k\right)_{n}$ and $k_{2}=\left(-x_{2} k\right)_{n}$. Conversely, given any $k \in[1, n-1]$, the subsequence T defined above with $k_{1}=\left(-x_{1} k\right)_{n}$ and $k_{2}=\left(-x_{2} k\right)_{n}$ will be a nontrivial zero-sum. Now

$$
|T|=k_{1}+k_{2}+k=\left(-x_{1} k\right)_{n}+\left(-x_{2} k\right)_{n}+(k)_{n} .
$$

If $\left(-x_{1} k\right)_{n}+\left(-x_{2} k\right)_{n}+(k)_{n} \leqslant n$ for some $k \in[1, n-1]$, then the corresponding subsequence T defined using k is a nontrivial zero-sum subsequence of length at most n, showing $0 \in \Sigma_{\leqslant n}(S)$. On the other hand, if $0 \in \Sigma_{\leqslant n}(S)$, then there is a nontrivial zero-sum of the form $T=e_{1}^{\left[k_{1}\right]} \cdot e_{2}^{\left[k_{2}\right]} \cdot\left(x_{1} e_{1}+x_{2} e_{2}\right)^{[k]}$, for some $k \in[1, n-1]$, which satisfies $|T|=\left(-x_{1} k\right)_{n}+\left(-x_{2} k\right)_{n}+(k)_{n} \leqslant n$.

The following is special case of [22, Proposition 2.1.1].
Lemma 7. Let $n \geqslant 2$ and let $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$ with $x_{1}+x_{2}+x_{3} \equiv 0 \bmod n$. There there exists $k \in[1, n-1]$ with $\operatorname{gcd}(k, n)=1$ and $\left(k x_{1}\right)_{n}+\left(k x_{2}\right)_{n}+\left(k x_{3}\right)_{n} \leqslant n$.

Lemma 8. Let $n \geqslant 2$. For $x \in[1, n-1]$ with $\operatorname{gcd}(x, n)=1$, let

$$
X(x)=\left\{\left\lceil\frac{n}{x}\right\rceil,\left\lceil\frac{2 n}{x}\right\rceil, \ldots,\left\lceil\frac{(x-1) n}{x}\right\rceil\right\} \subseteq[2, n-1] .
$$

1. $|X(x)|=x-1$.
2. Let $d=\left\lfloor\frac{n}{x}\right\rfloor$. The difference between any two consecutive elements in $X(x)$ is either d or $d+1$ with $\min X(x)=d+1$ and $\max X(x)=n-d($ for $x \geqslant 2)$.
3. $[2, n-1]=X(x) \cup X(n-x)$ is a disjoint union.
4. Let $\Delta(u, x)=(u x)_{n}-((u-1) x)_{n}$. For every $u \in[1, n-1], \Delta(u, x) \in\{x, x-n\}$ with $u \in X(x)$ iff $\Delta(u, x)=x-n$.

Proof. Item 1-3 are given in [22, Lemma 2.4]. For Item 4, we have $-n<\Delta(u, x)<n$, and since $\Delta(u, x) \equiv x \bmod n$, it follows that $\Delta(u, x) \in\{x, x-n\}$. Let $u \in \mathbb{Z}$ and $t=\left\lfloor\frac{u x}{n}\right\rfloor$, so

$$
t n \leqslant u x<(t+1) n \quad \text { and } \quad u x=(u x)_{n}+t n=((u-1) x)_{n}+\Delta(u, x)+t n .
$$

Hence $\Delta(u)=x-n$ when $(u-1) x=((u-1) x)_{n}+(t-1) n<t n$, and $\Delta(u)=x$ when $(u-1) x=((u-1) x)_{n}+t n \geqslant t n$. Thus $\Delta(u)=x-n$ if and only if $(u-1) x<t n$. Since $t n \leqslant u x$ always holds, this is equivalent to $\frac{t n}{x} \leqslant u<\frac{t n}{x}+1$, and as u is an integer, this is equivalent to $u=\left\lceil\frac{t n}{x}\right\rceil$. Therefore $\Delta(u, x)=x-n$ if and only if $u=\left\lceil\frac{t n}{x}\right\rceil$, where $t=\left\lfloor\frac{u x}{n}\right\rfloor$. Now restrict to $u \in[1, n-1]$. Since $u<n$, we have $t=\left\lfloor\frac{u x}{n}\right\rfloor \leqslant x-1$. Since $u, x \geqslant 1$, we have $t=\left\lfloor\frac{u x}{n}\right\rfloor \geqslant 0$. However, $u=\left\lceil\frac{t n}{x}\right\rceil$ with $u \geqslant 1$ forces $t \neq 0$, while $u=\left\lceil\frac{t n}{x}\right\rceil=\frac{t n+r}{x}$ with $t \in[1, x-1]$ (and $r \in[0, x-1]$) ensures $t=\frac{u x-r}{n}=\left\lfloor\frac{u x}{n}\right\rfloor($ as $0 \leqslant r<x \leqslant n)$. As a result, for $u \in[1, n-1]$, we find that $\Delta(u, x)=x-n$ if and only if $u=\left\lceil\frac{t n}{x}\right\rceil$ for some $t \in[1, x-1]$, as desired.

Lemma 9. Let $n \geqslant 2$ and let $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$ with $\operatorname{gcd}\left(x_{i}, n\right)=1$ for all $i \in[1,3]$. If $\left(k x_{1}\right)_{n}+\left(k x_{2}\right)_{n}+\left(k x_{3}\right)_{n}>n$ for every $k \in[1, n-1]$, then $x_{i}+x_{j} \equiv 0 \bmod n$ for some distinct $i, j \in[1,3]$.

Proof. If $\operatorname{gcd}\left(x_{1}+x_{2}+x_{3}, n\right) \neq 1$, then there exists some $r \in[1, n-1]$ such that $r x_{1}+r x_{2}+$ $r x_{3} \equiv 0 \bmod n$. Applying Lemma 7 to $r x_{1}, r x_{2}, r x_{3} \in \mathbb{Z}$, we find some $s \in[1, n-1]$ with $\operatorname{gcd}(s, n)=1$ and $\left(s r x_{1}\right)_{n}+\left(s r x_{2}\right)_{n}+\left(s r x_{3}\right)_{n} \leqslant n$. But then, setting $k=(s r)_{n} \in[0, n-1]$, we have $\left(k x_{1}\right)_{n}+\left(k x_{2}\right)_{n}+\left(k x_{3}\right)_{n} \leqslant n$ with $k=(s r)_{n} \neq 0$ since $r \in[1, n-1]$ and $\operatorname{gcd}(s, n)=$ 1 , which is contrary to hypothesis. Therefore, we conclude that $\operatorname{gcd}\left(x_{1}+x_{2}+x_{3}, n\right)=1$. As a result, replacing $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$ with $s x_{1}, s x_{2}, s x_{3} \in \mathbb{Z}$, where $s \in \mathbb{Z}$ is an integer congruent to the inverse of $x_{1}+x_{2}+x_{3}$ modulo n, we can w.l.o.g. assume

$$
x_{1}+x_{2}+x_{3} \equiv 1 \quad \bmod n
$$

Replacing each x_{i} by $\left(x_{i}\right)_{n}$, we can w.l.o.g. assume $x_{1}, x_{2}, x_{3} \in[1, n-1]$. If $n=2$, then $x_{1}=x_{2}=x_{3}=1$, and the lemma holds. Therefore we may assume $n \geqslant 3$.
Claim 1. For every $u \in[1, n-1]$,

$$
\left(u x_{1}\right)_{n}+\left(u x_{2}\right)_{n}+\left(u x_{3}\right)_{n}=n+u
$$

Proof. Indeed, $\left(u x_{1}\right)_{n}+\left(u x_{2}\right)_{n}+\left(u x_{3}\right)_{n} \equiv u\left(x_{1}+x_{2}+x_{3}\right) \equiv u$, so $\left(u x_{1}\right)_{n}+\left(u x_{2}\right)_{n}+\left(u x_{3}\right)_{n}=$ $k n+u$ for some $k \in\{0,1,2\}$. By hypothesis $k n+u \geqslant n+1$, so $\left(u x_{1}\right)_{n}+\left(u x_{2}\right)_{n}+\left(u x_{3}\right)_{n} \in$ $\{n+u, 2 n+u\}$ for every $u \in[1, n-1]$. Since $u \in[1, n-1]$ and $\operatorname{gcd}\left(x_{i}, n\right)=1$ for every $i \in[1,3]$, we have $\left(u x_{i}\right)_{n} \neq 0$ and $\left((n-u) x_{i}\right)_{n}=n-\left(u x_{i}\right)_{n}$ for all $i \in[1,3]$. Consequently, if $\left(u x_{1}\right)_{n}+\left(u x_{2}\right)_{n}+\left(u x_{3}\right)_{n}=2 n+u$ for some $u \in[1, n-1]$, then we find $\left((n-u) x_{1}\right)_{n}+\left((n-u) x_{2}\right)_{n}+\left((n-u) x_{3}\right)_{n}=\left(n-\left(u x_{1}\right)_{n}\right)+\left(n-\left(u x_{1}\right)_{n}\right)+\left(n-\left(u x_{1}\right)_{n}\right)=$ $3 n-(2 n+u)=n-u \leqslant n$, which is contrary to hypothesis.
$\square($ Claim 1)
Let $X_{i}=X\left(x_{i}\right)$ and $\Delta\left(u, x_{i}\right)$ for $i \in[1,3]$ be as defined in Lemma 8. The special case $u=1$ in Claim 1 ensures

$$
x_{1}+x_{2}+x_{3}=n+1
$$

Hence, if $x_{k}=1$ for some $k \in[1,3]$, then the desired conclusion follows with $\{i, j\}=$ $[1,3] \backslash k$, so we may assume

$$
\begin{equation*}
x_{1}, x_{2}, x_{3} \geqslant 2 \tag{1}
\end{equation*}
$$

ensuring X_{1}, X_{2} and X_{3} are each nonempty (by Lemma 8.1).
Claim 2. [2, $n-1]=X_{1} \cup X_{2} \cup X_{3}$ is a disjoint union.
Proof. By Claim 1, for every $u \in[2, n-1]$, we have

$$
\sum_{i=1}^{3} \Delta\left(u, x_{i}\right)=\sum_{i=1}^{3}\left(u x_{i}\right)_{n}-\sum_{i=1}^{3}\left((u-1) x_{i}\right)_{n}=(n+u)-(n+u-1)=1
$$

On the other hand, if u belongs to $s \in[0,3]$ of the sets X_{1}, X_{2} and X_{3}, then Lemma 8.4 implies $1=\sum_{i=1}^{3} \Delta\left(u, x_{i}\right)=x_{1}+x_{2}+x_{3}-s n=1+(1-s) n$, forcing $s=1$, which completes the claim as $X_{i}=X\left(x_{i}\right) \subseteq[2, n-1]$ holds trivially for any $x_{i} \in[1, n-1]$.

Note that $2 \in X_{i}=X\left(x_{i}\right)$ precisely when $\left\lceil\frac{n}{x_{i}}\right\rceil=2$, i.e., when $\frac{n}{2} \leqslant x_{i} \leqslant n-1$. Consequently, in view of Claim 2 and $n \geqslant 3$, we can w.l.o.g. assume

$$
x_{2}, x_{3}<\frac{n}{2} \leqslant x_{1} .
$$

Let $x_{1}^{\prime}=n-x_{1} \in\left[1, \frac{n}{2}\right]$ and set $X_{1}^{\prime}=X\left(x_{1}^{\prime}\right)$. By Lemma 8.3 and Claim 2, we have

$$
\begin{equation*}
X_{1}^{\prime}=[2, n-1] \backslash X_{1}=X_{2} \cup X_{3}, \tag{2}
\end{equation*}
$$

with the union disjoint. Hence, since X_{2} and X_{3} are nonempty, as noted above, it follows that X_{1}^{\prime} is also nonempty, ensuring $x_{1}^{\prime} \geqslant 2$ (by Lemma 8.1).

As in Lemma 8, let $d_{2}=\left\lfloor\frac{n}{x_{2}}\right\rfloor, d_{3}=\left\lfloor\frac{n}{x_{3}}\right\rfloor$ and $d_{1}^{\prime}=\left\lfloor\frac{n}{x_{1}^{\prime}}\right\rfloor$. Note $d_{2}, d_{3}, d_{1}^{\prime} \geqslant 2$ since $x_{2}, x_{3}, x_{1}^{\prime} \leqslant \frac{n}{2}$. By Lemma 8.2, the minimal element in X_{i} for $i=2,3$ (resp. the minimal element in X_{1}^{\prime}) is $d_{i}+1$ (resp. $d_{1}^{\prime}+1$). Since $X_{1}^{\prime}=X_{2} \cup X_{3}$, the minimal element $d_{1}^{\prime}+1$ in X_{1}^{\prime} must either equal the minimal element in X_{2} or the minimal element in X_{3}, say w.l.o.g. the former, in which case $d_{1}^{\prime}+1=d_{2}+1 \in X_{2}$. Denote this joint value by $d:=d_{1}^{\prime}=d_{2}$.
Claim 3. $X_{1}^{\prime}=X_{2}$.
Proof. By (2), we have $X_{2} \subseteq X_{1}^{\prime}$, and the first element of X_{1}^{\prime} is in X_{2} by assumption, equal to the first element of X_{2}. Let $d+1=z_{1}<z_{2}<\cdots<z_{x_{1}^{\prime}-1}$ denote the elements of X_{1}^{\prime}. Assume $z_{k} \in X_{2}$ for $k<x_{1}^{\prime}-1$. By Lemma 8.2 applied to X_{1}^{\prime}, since $d \geqslant 2$, z_{k+1} is one of the values $z_{k}+d$ or $z_{k}+d+1$, and exactly one of these elements is in X_{1}^{\prime}. But $d_{2}=d$, so Lemma 8.2 applied to X_{2} yields that the next element of X_{2} after $z_{k} \in X_{2}$ is also either $z_{k}+d$ or $z_{k}+d+1$. Since only one of these two possibilities lies in X_{1}^{\prime}, namely the value between them equal to z_{k+1}, we are forced to conclude from $X_{2} \subseteq X_{1}^{\prime}$ that the next element in X_{2} after $z_{k} \in X_{2}$ is $z_{k+1} \in X_{2}$. This shows, via induction on k, that X_{2} equals the first $\left|X_{2}\right|$ elements of X_{1}^{\prime}. However, Lemma 8.2 implies that $\max X_{2}=n-d_{2}=n-d=n-d_{1}^{\prime}=\max X_{1}^{\prime}$, which combined with the previous conclusion forces $X_{1}^{\prime}=X_{2}$.

Since $X_{1}^{\prime}=X_{2} \cup X_{3}$ is a disjoint union, we conclude from Claim 3 that $X_{3}=\varnothing$, whence $x_{3}-1=\left|X_{3}\right|=0$ by Lemma 8.1, contradicting (1).

Proposition 10. For any $n \geqslant 2$, Conjecture 1.4 holds for $k=n-1$ in $C_{n} \oplus C_{n}$.
Proof. Let $G \cong C_{n} \oplus C_{n}$ and let $S \in \mathcal{F}(G)$ be a sequence with $|S|=3 n-3$ and $0 \notin \Sigma_{\leqslant n}(S)$. Then $S=e_{1}^{[n-1]} \cdot e_{2}^{[n-1]} \cdot e_{3}^{[n-1]}$ for some $e_{1}, e_{2}, e_{3} \in G$ which pairwise form bases for G, as noted at the start of Section 2. Write $e_{3}=x_{1} e_{1}+x_{2} e_{2}$ with $x_{1}, x_{2} \in[1, n-1]$. By Lemma 6 , the hypothesis that $0 \notin \Sigma_{\leqslant n}(S)$ is equivalent to $\left(-x_{1} \cdot k\right)_{n}+\left(-x_{2} \cdot k\right)_{n}+(k \cdot 1)_{n}>n$ holding for all $k \in[1, n-1]$. Since $\left(e_{1}, e_{3}\right)$ and $\left(e_{2}, e_{3}\right)$ are both bases, we must have $\operatorname{gcd}\left(x_{1}, n\right)=\operatorname{gcd}\left(x_{2}, n\right)=1$. Applying Lemma 9 using the elements $-x_{1},-x_{2}$ and 1 , we deduce that either $x_{1}+x_{2} \equiv 0 \bmod n$, or $x_{1}=1$, or $x_{2}=1$. If $x_{1}=1$, then the conclusion of Conjecture 1.4 holds using the basis $\left(e_{2}, e_{1}\right)$. If $x_{2}=1$, then the conclusion of Conjecture 1.4 holds using the basis $\left(e_{1}, e_{2}\right)$. If $x_{1}+x_{2} \equiv 0 \bmod n$, then $e_{3}=x_{1} e_{1}-x_{1} e_{2}$.

In this final case, letting $y \in[1, n-1]$ be the multiplicative inverse of x_{1} modulo n, we find that $y e_{3}=e_{1}-e_{2}$ and $e_{1}=y e_{3}+e_{2}$, in which case Conjecture 1.4 holds using the basis $\left(e_{3}, e_{2}\right)$, which completes the proof.

3 Reduction to the Diagonal Case

The goal of this section is to prove Theorem 2.1 as well as the three corollaries giving examples where our results hold without restriction. For the proof, we will need the following characterization of maximal length minimal zero-sums in a cyclic group [14][Corollary 5.4.6], [15][Corollary 4.4].

Theorem 11. Let $n \geqslant 2$, let $G \cong C_{n}$. If $S \in \mathcal{F}(G)$ is a minimal zero-sum sequence of length $|S|=\mathrm{D}(G)=n$, then $S=g^{[n]}$ for some $g \in G$ with $\operatorname{ord}(g)=n$. If $S \in \mathcal{F}(G)$ is a zero-sum free sequence of length $|S|=\mathrm{D}(G)-1=n-1$, then $S=g^{[n-1]}$ for some $g \in G$ with $\operatorname{ord}(g)=n$

We continue with the proof of Theorem 2.1.
Proof of Theorem 2.1. Let $G \cong C_{n} \oplus C_{m n}$ and let $\varphi: G \rightarrow G$ be a homomorphism with

$$
\operatorname{ker} \varphi \cong C_{m} \quad \text { and } \quad \varphi(G) \cong C_{n} \oplus C_{n} .
$$

Since $k \in[2, n-2]$, we have $n \geqslant 4$. Let $S \in \mathcal{F}(G)$ be a sequence with

$$
\begin{equation*}
|S|=m n+n-2+k \quad \text { and } \quad 0 \notin \Sigma_{\leqslant m n+n-1-k}(S) . \tag{3}
\end{equation*}
$$

Define a block decomposition of S to be a factorization

$$
S=W \cdot W_{1} \cdots \cdot W_{m-1}
$$

with $1 \leqslant\left|W_{i}\right| \leqslant n$ and $\varphi\left(W_{i}\right)$ zero-sum for each $i \in[1, m-1]$. Since $\mathbf{s}_{\leqslant n}(\varphi(G))=$ $\mathbf{s}_{\leqslant n}\left(C_{n} \oplus C_{n}\right)=3 n-2$ and $|S|=(m-2) n+3 n-2+k \geqslant(m-2) n+3 n-2$, it follows by repeated application of $\mathbf{s}_{\leqslant n}(\varphi(G))$ that S has a block decomposition.
Claim A. If $S=W \cdot W_{1} \cdots \cdots W_{m-1}$ is a block decomposition of S, then $\left|W_{i}\right|=n$ for all $i \in[1, m-1],|W|=2 n-2+k, 0 \notin \Sigma_{\leqslant 2 n-1-k}(\varphi(W))$, and $0 \notin \Sigma_{\leqslant n-1}(\varphi(S))$. In particular, Conjecture 1 holds for $\varphi(W)$.

Proof. Suppose $0 \in \Sigma_{\leqslant 2 n-1-k}(\varphi(W))$. Then there is a nontrivial subsequence $W_{0} \mid W$ with $\left|W_{0}\right| \leqslant 2 n-1-k$ and $\varphi\left(W_{0}\right)$ zero-sum. Now $\sigma\left(W_{0}\right) \cdot \sigma\left(W_{1}\right) \cdots \cdots \sigma\left(W_{2 m-2+k_{m}}\right)$ is a sequence of m terms from $\operatorname{ker} \varphi \cong C_{m}$. Since $\mathrm{D}\left(C_{m}\right)=m$, it follows that it has a nontrivial zerosum subsequence, say $\prod_{i \in I}^{\bullet} \sigma\left(W_{i}\right)$ for some nonempty $I \subseteq[0, m-1]$. But then $\prod_{i \in I}^{\bullet} W_{i}$ is a nontrivial zero-sum subsequence of S with $\left|\prod_{i \in I}^{\bullet} W_{i}\right| \leqslant(m-1) n+(2 n-1-k)=$ $m n+n-1-k$, contrary to (3). So we instead conclude that $0 \notin \Sigma_{\leqslant 2 n-1-k}(\varphi(W))$.

As a result, since $\mathbf{s}_{\leqslant 2 n-1-k}(\varphi(G))=\mathbf{s}_{\leqslant 2 n-1-k}\left(C_{n} \oplus C_{n}\right)=2 n-1+k$, and since $\left|W_{i}\right| \leqslant n$ for all $i \in[1, m-1]$, it follows that

$$
2 n-2+k=m n+n-2+k-(m-1) n \leqslant|S|-\sum_{i=1}^{m-1}\left|W_{i}\right|=|W| \leqslant 2 n-2+k
$$

forcing equality to hold in all estimates, i.e., $\left|W_{i}\right|=n$ for $i \in[1, m-1]$ and $|W|=$ $2 n-2+k$. If $0 \in \Sigma_{\leqslant n-1}(\varphi(S))$, then we can find a nontrivial subsequence $W_{1}^{\prime} \mid S$ with $\left|W_{1}^{\prime}\right| \leqslant n-1$ and $\varphi\left(W_{1}^{\prime}\right)$ zero-sum. Applying the argument used to show the existence of a block decomposition, we obtain a block decomposition $S=W^{\prime} \cdot W_{1}^{\prime} \cdots \cdot W_{m-1}^{\prime}$ with $\left|W_{1}^{\prime}\right| \leqslant n-1$, contradicting what was just shown. Therefore $0 \notin \Sigma_{\leqslant n-1}(\varphi(S))$. Finally, since $|W|=2 n-2+k$ and $0 \notin \Sigma_{\leqslant 2 n-1-k}(\varphi(W))$ with Conjecture 1 holding for k in $C_{n} \oplus C_{n}$ by hypothesis, it follows that Conjecture 1 holds for $\varphi(W)$.
$\square($ Claim A)
Suppose

$$
S=\widetilde{W} \cdot W_{0} \cdot W_{1} \cdots \cdot W_{m-1}
$$

with each $\varphi\left(W_{i}\right)$ a nontrivial zero-sum for $i \in[0, m-1]$ and $|\widetilde{W}| \geqslant 2 k-n-1$. We call this a weak block decomposition of S with associated sequence

$$
S_{\sigma}=\sigma\left(W_{0}\right) \cdot \sigma\left(W_{1}\right) \cdots \cdots \sigma\left(W_{m-1}\right) \in \mathcal{F}(\operatorname{ker} \varphi)
$$

Since $\operatorname{ker} \varphi \cong C_{m}$ and $\left|S_{\sigma}\right|=m=\mathrm{D}\left(C_{m}\right)$, it follows that S_{σ} contains a nontrivial zerosum. In view of Claim A, we have $\left|W_{i}\right| \geqslant n$ for all $i \in[0, m-1]$. As a result, if S_{σ} contained a proper, nontrivial zero-sum subsequence, then S would have a nontrivial zero-sum of length at most $|S|-|\widetilde{W}|-n \leqslant(m n+n-2+k)-(2 k-n-1)-n=m n+n-1-k$, contrary to (3). We conclude that the associated sequence S_{σ} must be a minimal zero-sum of length $\mathrm{D}\left(C_{m}\right)=m$, in which case Theorem 11 implies that there is some $g_{0} \in \operatorname{ker} \varphi$ with $\operatorname{ord}\left(g_{0}\right)=m$ such that

$$
\begin{equation*}
\sigma\left(W_{0}\right)=\sigma\left(W_{1}\right)=\cdots=\sigma\left(W_{m-1}\right)=g_{0} \tag{4}
\end{equation*}
$$

Now let $S=W \cdot W_{1} \cdots \cdots W_{m-1}$ be a fixed but otherwise arbitrary block decomposition. In view of Claim A, we have $|W|=2 n-2+k$ with $0 \notin \Sigma_{\leqslant 2 n-1-k}(\varphi(W))$ and Conjecture 1 holding for $\varphi(W)$ using $k \in[2, n-2]$. As a result, there is a basis $\left(\bar{e}_{1}, \bar{e}_{2}\right)$ for $\varphi(G) \cong$ $C_{n} \oplus C_{n}$ such that

$$
\varphi(W)=\bar{e}_{1}^{[n-1]} \cdot \bar{e}_{2}^{[n-1]} \cdot\left(\bar{e}_{1}+\bar{e}_{2}\right)^{[k]},
$$

and there is a subsequence $W_{0} \mid W$ with

$$
\varphi\left(W_{0}\right)=\bar{e}_{1}^{[n-k]} \cdot \bar{e}_{2}^{[n-k]} \cdot\left(\bar{e}_{1}+\bar{e}_{2}\right)^{[k]}
$$

Setting $\widetilde{W}=W \cdot W_{0}^{[-1]}$, so

$$
\varphi(\widetilde{W})=\bar{e}_{1}^{[k-1]} \cdot \bar{e}_{2}^{[k-1]}
$$

we find $|\widetilde{W}|=2 k-2>2 k-n-1($ as $n \geqslant 2)$, meaning $S=\widetilde{W} \cdot W_{0} \cdot W_{1} \cdot \ldots \cdot W_{m-1}$ is a weak block decomposition with associated sequence $S_{\sigma}=\sigma\left(W_{0}\right) \cdot \sigma\left(W_{1}\right) \cdots \cdots \sigma\left(W_{m-1}\right)$ satisfying (4) for some $g_{0} \in \operatorname{ker} \varphi$ with $\operatorname{ord}\left(g_{0}\right)=m$.
Claim B. For any $j \in[1, m-1]$, if $W_{j}^{\prime} \mid W \cdot W_{j}$ is a subsequence with $\left|W_{j}^{\prime}\right|=n$ and $\varphi\left(W_{j}^{\prime}\right)$ zero-sum, then $\varphi\left(W \cdot W_{j} \cdot\left(W_{j}^{\prime}\right)^{[-1]}\right)=\varphi(W)=\bar{e}_{1}^{[n-1]} \cdot \bar{e}_{2}^{[n-1]} \cdot\left(\bar{e}_{1}+\bar{e}_{2}\right)^{[k]}$.

Proof. We can w.l.o.g. assume $j=1$. Setting $W^{\prime}=W \cdot W_{1} \cdot\left(W_{1}^{\prime}\right)^{[-1]}$, we find that $S=W^{\prime} \cdot W_{1}^{\prime} \cdot W_{2} \cdot \cdots \cdot W_{m-1}$ is a block decomposition, so Conjecture 1 must hold for $\varphi\left(W^{\prime}\right)$ by Claim A with respect to some basis $\left(\bar{f}_{1}, \bar{f}_{2}\right)$, meaning $\varphi\left(W \cdot W_{1} \cdot\left(W_{1}^{\prime}\right)^{[-1]}\right)=$ $\varphi\left(W^{\prime}\right)=\bar{f}_{1}^{[n-1]} \cdot \bar{f}_{2}^{[n-1]} \cdot\left(\bar{f}_{1}+\bar{f}_{2}\right)^{[k]}$. We need to show $\left\{\bar{f}_{1}, \bar{f}_{2}\right\}=\left\{\bar{e}_{1}, \bar{e}_{2}\right\}$. Assuming by contradiction that this fails, we can w.l.o.g. assume $\bar{f}_{1} \notin\left\{\bar{e}_{1}, \bar{e}_{2}\right\}$, ensuring f_{1} has multiplicity at least $n-1$ in $\varphi\left(W \cdot W_{1}\right)$. Note, since the n-term zero-sum $\varphi\left(W_{1}\right)$ cannot contain a term with multiplicity exactly $n-1$, any term $g \notin\left\{\bar{e}_{1}, \bar{e}_{2}\right\}$ with multiplicity at least $n-1$ in $\varphi\left(W \cdot W_{1}\right)$ must either have $\varphi\left(W_{1}\right)=g^{[n]}$ or else $g=\bar{e}_{1}+\bar{e}_{2}$ with $\mathrm{v}_{\bar{e}_{1}+\bar{e}_{2}}\left(\varphi\left(W_{1}\right)\right) \geqslant n-1-k \geqslant 1$. In both cases, there cannot be a second term $g^{\prime} \notin\left\{\bar{e}_{1}, \bar{e}_{2}\right\}$ with multiplicity at least $n-1$, the former since $\mathrm{v}_{\bar{e}_{1}+\bar{e}_{2}}\left(W_{0} \cdot W_{1}\right)=k \leqslant n-2$, and the latter since $\varphi\left(W_{1}\right)$ cannot contain a term with multiplicity exactly $n-1$. As a result, we conclude that \bar{e}_{1}, \bar{e}_{2} and \bar{f}_{1} are the only terms with multiplicity at least $n-1$ in $\varphi\left(W \cdot W_{1}\right)$, and thus w.l.o.g. $\bar{f}_{2}=\bar{e}_{2}$.

Suppose $\bar{f}_{1}=\bar{e}_{1}+\bar{e}_{2}$. Then $\varphi\left(W^{\prime}\right)=\left(\bar{e}_{1}+\bar{e}_{2}\right)^{[n-1]} \cdot \bar{e}_{2}^{[n-1]} \cdot\left(\bar{e}_{1}+2 \bar{e}_{2}\right)^{[k]}$, and since $n \geqslant 4$ ensures $\bar{e}_{1}+2 \bar{e}_{2} \neq \bar{e}_{1}$ with $\varphi\left(W_{1}^{\prime}\right)$ an n-term zero-sum, it follows that $\varphi\left(W_{1}^{\prime}\right)=\bar{e}_{1}^{[n]}$. In such case, $\varphi\left(W_{1}\right)=\left(\bar{e}_{1}+\bar{e}_{2}\right)^{[n-1-k]} \cdot \bar{e}_{1} \cdot\left(\bar{e}_{1}+2 \bar{e}_{2}\right)^{[k]}$, which is only zero-sum for $k=1$, contradicting that $k \in[2, n-2]$. So we conclude that $\bar{f}_{1} \neq \bar{e}_{1}+\bar{e}_{2}$, in which case we must instead have $\varphi\left(W_{1}\right)=\bar{f}_{1}^{[n]}$.

In this case, $\varphi\left(W^{\prime}\right)=\bar{f}_{1}^{[n-1]} \cdot \bar{e}_{2}^{[n-1]} \cdot\left(\bar{f}_{1}+\bar{e}_{2}\right)^{[k]}$ with $\bar{f}_{1}+\bar{e}_{2} \in\left\{\bar{e}_{1}, \bar{e}_{1}+\bar{e}_{2}\right\}$. Thus either $\bar{f}_{1}=\bar{e}_{1}-\bar{e}_{2}$ or \bar{e}_{1}. Since $\bar{f}_{1} \neq \bar{e}_{1}$, this means $\bar{f}_{1}=\bar{e}_{1}-\bar{e}_{2} \neq \bar{e}_{1}+\bar{e}_{2}($ as $n \geqslant 3)$, $\varphi\left(W^{\prime}\right)=\bar{f}_{1}^{[n-1]} \cdot \bar{e}_{2}^{[n-1]} \cdot \bar{e}_{1}^{[k]}=\left(\bar{e}_{1}-\bar{e}_{2}\right)^{[n-1]} \cdot \bar{e}_{2}^{[n-1]} \cdot \bar{e}_{1}^{[k]}$ and $\varphi\left(W_{1}^{\prime}\right)=\bar{e}_{1}^{[n-1-k]} \cdot\left(\bar{e}_{1}+\bar{e}_{2}\right)^{[k]} \cdot \bar{f}_{1}$. Hence, since $\varphi\left(W_{1}^{\prime}\right)$ is an n-term zero-sum, it follows that $\bar{e}_{1}-\bar{e}_{2}=\bar{f}_{1}=\bar{e}_{1}-k \bar{e}_{2}$, contradicting that $k \in[2, n-2]$.

Claim C. $\varphi\left(W_{j}\right) \in\left\{\bar{e}_{1}^{[n]}, \bar{e}_{2}^{[n]},\left(\bar{e}_{1}+\bar{e}_{2}\right)^{[n]}\right\}$ for every $j \in[1, m-1]$.
Proof. Since each $\varphi\left(W_{j}\right)$, for $j \in[1, m-1]$, is a zero-sum of length n by Claim A, it suffices to show $\operatorname{Supp}\left(\varphi\left(W_{1} \cdots \cdots W_{m-1}\right)\right) \subseteq\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{1}+\bar{e}_{2}\right\}$. Let $g \in \operatorname{Supp}\left(W_{j}\right)$ and $j \in[1, m-1]$ be arbitrary. Since $0 \notin \Sigma_{\leqslant n-1}(\varphi(S))$ by Claim A and $\left|W \cdot W_{j} \cdot g^{[-1]}\right|=$ $3 n-3+k \geqslant 3 n-2=\mathrm{s}_{\leqslant n}\left(C_{n} \oplus C_{n}\right)$, there is subsequence $W_{j}^{\prime} \mid W \cdot W_{j} \cdot g^{[-1]}$ with $\left|W_{j}^{\prime}\right|=n, \varphi\left(W_{1}^{\prime}\right)$ zero-sum and $g \in \operatorname{Supp}\left(W \cdot W_{j} \cdot\left(W_{j}^{\prime}\right)^{[-1]}\right)$. Thus Claim B ensures that $\varphi(g) \in\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{1}+\bar{e}_{2}\right\}$, and as $g \in \operatorname{Supp}\left(W_{j}\right)$ and $j \in[1, m-1]$ were arbitrary, the claim follows.

Claim D. There are $g_{1}, g_{2} \in G$ with $\varphi\left(g_{1}\right)=\bar{e}_{1}, \quad \varphi\left(g_{2}\right)=\bar{e}_{2}$ and also $\operatorname{Supp}(S)=$ $\left\{g_{1}, g_{2}, g_{1}+g_{2}\right\}$.

Proof. Let $x \in \operatorname{Supp}(\widetilde{W})$ and $y \in \operatorname{Supp}\left(W_{j}\right)$, for some $j \in[0, m-1]$, be arbitrary terms with $\varphi(x)=\varphi(y)=\bar{e}_{1}$, which exist as $k \geqslant 2$ and $\mathrm{v}_{\bar{e}_{1}}\left(\varphi\left(W_{0}\right)\right)=n-k \geqslant 1$. If we set $\widetilde{W^{\prime}}=\widetilde{W} \cdot x^{[-1]} \cdot y$ and $W_{j}^{\prime}=W_{j} \cdot y^{[-1]} \cdot x$, we find that $S=\widetilde{W^{\prime}} \cdot W_{1} \cdot \ldots$. $W_{j-1} \cdot W_{j}^{\prime} \cdot W_{j+1} \cdots \cdots W_{m-1}$ is a weak product decomposition with associated sequence $S_{\sigma} \cdot \sigma\left(W_{j}\right)^{[-1]} \cdot \sigma\left(W_{j}^{\prime}\right)=g_{0}^{[m-1]} \cdot \sigma\left(W_{j}^{\prime}\right)$. As a result, Theorem 11 implies that $g_{0}-y+x=$ $\sigma\left(W_{j}\right)-y+x=\sigma\left(W_{j}^{\prime}\right)=g_{0}$, whence $x=y$. This shows that all terms $x \in \operatorname{Supp}(S)$ with $\varphi(x)=\bar{e}_{1}$ are equal to the same element (say) $g_{1} \in G$. The same argument shows that all terms $x \in \operatorname{Supp}(S)$ with $\varphi(x)=\bar{e}_{2}$ are equal to the same element (say) $g_{2} \in G$. Let $z \in \operatorname{Supp}\left(W_{0} \cdots \cdots W_{m-1}\right)$ be an arbitrary term with $\varphi(z)=\bar{e}_{1}+\bar{e}_{2}$, which exists as $\mathrm{v}_{\bar{e}_{1}+\bar{e}_{2}}\left(\varphi\left(W_{0}\right)\right)=k \geqslant 2$. Let $g \in \operatorname{Supp}\left(W_{j}\right)$ with $j \in[0, m-1]$. Since $k \geqslant 2$, we have $g_{1} \cdot g_{2} \mid \widetilde{W}$. If we set $\widetilde{W^{\prime}}=\widetilde{W} \cdot g_{1}^{[-1]} \cdot g_{2}^{[-1]} \cdot z$ and $W_{j}^{\prime}=W_{j} \cdot z^{[-1]} \cdot g_{1} \cdot g_{2}$, we find that $S=\widetilde{W^{\prime}} \cdot W_{1} \cdots \cdot W_{j-1} \cdot W_{j}^{\prime} \cdot W_{j+1} \cdots \cdot W_{m-1}$ is a weak product decomposition with associated sequence $S_{\sigma} \cdot \sigma\left(W_{j}\right)^{[-1]} \cdot \sigma\left(W_{j}^{\prime}\right)=g_{0}^{[m-1]} \cdot \sigma\left(W_{j}^{\prime}\right)$. As a result, Theorem 11 implies that $g_{0}-z+g_{1}+g_{2}=\sigma\left(W_{j}\right)-z+g_{1}+g_{2}=\sigma\left(W_{j}^{\prime}\right)=g_{0}$, whence $z=g_{1}+g_{2}$. This shows that all terms $x \in \operatorname{Supp}\left(W_{0} \cdots \cdots W_{m-1}\right)$ with $\varphi(z)=\bar{e}_{2}$ are equal to the same element $g_{1}+g_{2} \in G$. Since, by definition of \widetilde{W}, there are no terms $z \in \operatorname{Supp}(\widetilde{W})$ with $\varphi(z)=\bar{e}_{1}+\bar{e}_{2}$, the claim follows.
\square (Claim D)
In view of Claim D and (4), we find that

$$
\begin{equation*}
g_{0}=\sigma\left(W_{0}\right)=(n-k) g_{1}+(n-k) g_{2}+k\left(g_{1}+g_{2}\right)=n g_{1}+n g_{2} . \tag{5}
\end{equation*}
$$

Since $\varphi\left(g_{1}+g_{2}\right)=\bar{e}_{1}+\bar{e}_{2}$ has order n, it follows that n divides ord $\left(g_{1}+g_{2}\right)$, which, combined with $n\left(g_{1}+g_{2}\right)=g_{0}$ having ord $\left(g_{0}\right)=m$, forces ord $\left(g_{1}+g_{2}\right)=m n$. If $\left\langle g_{1}, g_{2}\right\rangle=G^{\prime}$ were a proper subgroup of $G \cong C_{n} \oplus C_{m n}$, then $\operatorname{ord}\left(g_{1}+g_{2}\right)=m n$ ensures that $\left\langle g_{1}, g_{2}\right\rangle \cong C_{n^{\prime}} \oplus C_{m n}$ for some proper divisor $n^{\prime} \mid n$. In such case, S would be a sequence of terms from $G^{\prime} \cong C_{n^{\prime}} \oplus C_{m n}$ with length $|S|=(m+1) n-2+k \geqslant m n+2 n^{\prime}-2+k \geqslant \eta\left(G^{\prime}\right)$, ensuring that S has a zero-sum of length at most $m n$, contrary to (3). Therefore $\left\langle g_{1}, g_{2}\right\rangle=G$, meaning $\left\{g_{1}, g_{2}\right\}$ is a generating set for G.

If there are $i, j \in[1, m-1]$ with $\varphi\left(W_{i}\right)=\bar{e}_{1}^{[n]}$ and $\varphi\left(W_{j}\right)=\bar{e}_{2}^{[n]}$, then Claim D ensures that $W_{i}=g_{1}^{[n]}$ and $W_{j}=g_{2}^{[n]}$. Combined with (4) and (5), this implies $n g_{1}+n g_{2}=$ $g_{0}=\sigma\left(W_{i}\right)=n g_{1}$ and $n g_{1}+n g_{2}=g_{0}=\sigma\left(W_{j}\right)=n g_{2}$, whence $n g_{1}=n g_{2}=0$ and $g_{0}=n g_{1}+n g_{2}=0$, contradicting that $\operatorname{ord}\left(g_{0}\right)=m \geqslant 2$. Therefore we can w.l.o.g. assume

$$
W_{1}, W_{2}, \ldots, W_{m-1} \in\left\{g_{2}^{[n]},\left(g_{1}+g_{2}\right)^{[n]}\right\}
$$

If $W_{1}=\cdots=W_{m-1}=\left(g_{1}+g_{2}\right)^{[n]}$, then Theorem 2.1(b) holds, as desired. So we can w.l.o.g assume $W_{1}=g_{2}^{[n]}$, in which case (4) and (5) yield $n g_{1}+n g_{2}=g_{0}=\sigma\left(W_{1}\right)=n g_{2}$, implying

$$
n g_{1}=0
$$

Let $s-1 \in[1, m-1]$ be the number of $i \in[1, m-1]$ with $W_{i}=g_{2}^{[n]}$. Then

$$
S=g_{1}^{[n-1]} \cdot g_{2}^{[s n-1]} \cdot\left(g_{1}+g_{2}\right)^{[(m-s) n+k]} .
$$

Since $n g_{1}=0$, we have $\operatorname{ord}\left(g_{1}\right) \leqslant n$. Thus

$$
n^{2} m=|G|=\left|\left\langle g_{1}, g_{2}\right\rangle\right|=\frac{\left|\left\langle g_{1}\right\rangle\right| \cdot\left|\left\langle g_{2}\right\rangle\right|}{\left|\left\langle g_{1}\right\rangle \cap\left\langle g_{2}\right\rangle\right|} \leqslant n(m n),
$$

forcing equality to hold in all above estimates. As a result, $\operatorname{ord}\left(g_{1}\right)=n, \operatorname{ord}\left(g_{2}\right)=m n$ and $\left\langle g_{1}\right\rangle \cap\left\langle g_{2}\right\rangle=\{0\}$, meaning $\left(g_{1}, g_{2}\right)$ is a basis for G, and now Theorem 2.1(a) holds, completing the proof.

To conclude the paper, we note that Corollaries 3,4 and 5 follow immediately by combining Theorem 2 with the respective result from [21, Corollaries 1.3, 1.4 and 1.5]. These corollaries represent the cases in [21] where Conjecture 1 was established unconditionally for C_{n}^{2}.

References

[1] P. Baginski, A. Geroldinger, D. J. Grynkiewicz and A. Philipp, Products of two atoms in Krull monoids and arithmetical characterizations of class groups, Eur. J. Comb. 34 (2013), no. 8, 1244-1268.
[2] G. Bhowmik, I. Halupczok, J. C. Schlage-Puchta, The structure of maximal zero-sum free sequences, Acta Arith. 143 (2010), no. 1, 21-50.
[3] G. Cohen and G. Zemor, Subset sums and coding theory, Astérisque 258 (1999) 327-339.
[4] C. Delorme, O. Ordaz and D. Quiroz, Some remarks on Davenport constant, Discrete Math. 237 (2001), 119-128.
[5] P. van Emde Boas, A combinatorial problem on finite abelian groups II, Math. Centrum Amsterdam Afd. Zuivere Wisk., 1969(ZW-007):60pp., 1969.
[6] P. van Emde Boas and D. Kruyswijk, A combinatorial problem on finite abelian groups, Math. Centrum Amsterdam Afd. Zuivere Wisk. 1967 (1967), ZW-009, 27 pp.
[7] M. Freeze and W. Schmid, Remarks on a generalization of the Davenport constant, Discrete Math. 310 (2010), 3373-3389.
[8] W. Gao and A. Geroldinger, On zero-sum sequences in $\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$, Integers 3 (2003), \#A8.
[9] W. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Period. Math. Hung. 38 (1999), 179-211.
[10] W. Gao, A. Geroldinger, D. J. Grynkiewicz, Inverse zero-sum problems III, Acta Arith. 141 (2010), no. 3, 103-152.
[11] W. Gao, Y. Li, C. Liu and Y. Qu, Product-one subsequences over subgroups of a finite group, Acta Arith. 189 (2019), 209-221.
[12] A. Geroldinger, D. J. Grynkiewicz and P. Yuan, On products of k atoms II, Mosc. J. Comb. Number Theory 5 (2015), no. 3, 3-59.
[13] A. Geroldinger, D. J. Grynkiewicz and W. A Schmid, Zero-sum problems with congruence conditions, Acta Math. Hungar. 131 (2011), no. 4, 323-345.
[14] A. Geroldinger and F. Halter-Koch, Non-unique factorizations: Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics, vol. 278, Chapman and Hall/CRC, 2006.
[15] A. Geroldinger and I. Ruzsa, Combinatorial number theory and additive group theory, Courses and seminars from the DocCourse in Combinatorics and Geometry held in Barcelona, 2008. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2009. xii +330 pp.
[16] A. Geroldinger and W. A. Schmid, A characterization of class groups via sets of lengths, J. Korean Math. Soc. 56 (2019), no. 4, 869-915.
[17] B. Girard, On the existence of zero-sum subsequences of distinct lengths, Rocky Mountain J. Math. 42 (2012), no. 2, 583-596.
[18] D. J. Grynkiewicz, Representing sequence subsums as sumsets of near equal sized sets, in Combinatorial Number Theory IV, ed. M. Nathanson, Springer (2021), Ch. 11.
[19] D. Grynkiewicz, Structural additive theory, Developments in Mathematics 30 (2013), Springer.
[20] D. J. Grynkiewicz, Inverse zero-sum problems III: Addendum, arXiv:2107.10619.
[21] D. J. Grynkiewicz and Chao Liu, A multiplicative property for zero-sums I, Discrete Math. 345 (2022), 112974.
[22] D. J. Grynkiewicz and U. Vishne, The index of small length sequences, International J. Algebra and Computation 30 (2020), 977-1014.
[23] D. J. Grynkiewicz, Chunlin Wang and Kevin Zhao, The structure of a sequence with prescribed zero-sum subsequences, Integers 20 (2020), Paper No. A3, 31 pp.
[24] J. E. Olson, A combinatorial problem on finite abelian groups I. J. Number Theory 1 (1969), 8-10.
[25] J. E. Olson, A combinatorial problem on finite abelian groups II. J. Number Theory 1 (1969), 195-199.
[26] O. Ordaz, A. Philipp, I. Santos and W. A. Schmid, On the Olson and the strong Davenport constants, J. Théor. Nombres Bordeaux 23 (2011), no. 3, 715-750.
[27] J. Peng, Y. Qu and Y. Li, Inverse problems associated with subsequence sums in $C_{p} \oplus C_{p}$, Front. Math. China 15 (2020), no. 5, 985-1000.
[28] C. Reiher, A proof of the theorem according to which every prime number possesses Property B, Ph.D Dissertation, University of Rostock, 2010.
[29] B. Roy and R. Thangadurai, On zero-sum subsequences in a finite abelian p-group of length not exceeding a given number, J. Number Theory 191 (2018), 246-257.
[30] W. A. Schmid, Restricted inverse zero-sum problems in groups of rank 2, Q. J. Math. 63 (2012), no. 2, 477-487.
[31] W. A. Schmid, Inverse zero-sum problems II, Acta Arith. 143 (2010), no. 4, 333-343.
[32] C. Wang and K. Zhao, On zero-sum subsequences of length not exceeding a given number, J. Number Theory 176 (2017), 365-374

