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Abstract

For n > 1, let Cn denote a cyclic group of order n. Let G ∼= Cn⊕Cmn with n > 2
and m > 1, and let k ∈ [0, n− 1]. It is known that any sequence of mn+ n− 1 + k
terms from G must contain a nontrivial zero-sum of length at most mn+n− 1− k.
The associated inverse question is to characterize those sequences with maximal
length mn + n − 2 + k that fail to contain a nontrivial zero-sum subsequence of
length at most mn + n − 1 − k. For k 6 1, this is the inverse question for the
Davenport Constant. For k = n − 1, this is the inverse question for the η(G)
invariant concerning short zero-sum subsequences. For Cn ⊕ Cn and k ∈ [2, n− 2],
with n > 5 prime, it was conjectured in a paper of Grynkiewicz, Wang and Zhao that

they must have the form S = e
[n−1]
1 · e[n−1]2 · (e1 + e2)

[k] for some basis (e1, e2), with
the conjecture established in many cases and later extended to composite moduli
n. In this paper, we focus on the case m > 2. Assuming the conjectured structure
holds for k ∈ [2, n − 2] in Cn ⊕ Cn, we characterize the structure of all sequences
of maximal length mn + n − 2 + k in Cn ⊕ Cmn that fail to contain a nontrivial
zero-sum of length at most mn + n − 1 − k, showing they must either have the

form S = e
[n−1]
1 · e[sn−1]2 · (e1 + e2)

[(m−s)n+k] for some s ∈ [1,m] and basis (e1, e2)

with ord(e2) = mn, or else have the form S = g
[n−1]
1 · g[n−1]2 · (g1 + g2)

[(m−1)n+k]

for some generating set {g1, g2} with ord(g1 + g2) = mn. In view of prior work,
this reduces the structural characterization for a general rank two abelian group to
the case Cp ⊕ Cp with p prime. Additionally, we give a new proof of the precise
structure in the case k = n−1 for m = 1. Combined with known results, our results
unconditionally establish the structure of extremal sequences in G ∼= Cn ⊕ Cmn in
many cases, including when n is only divisible by primes at most 7, when n > 2 is a
prime power and k 6 2n+1

3 , or when n is composite and k = n− d− 1 or n− 2d+1
for a proper, nontrivial divisor d | n.
Mathematics Subject Classifications: 11B75
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1 Introduction and Preliminaries

Regarding combinatorial notation for sequences and subsums, we utilize the standardized
system surrounding multiplicative strings as outlined in the references [15] [14] [19]. For
the reader new to this notational system, we begin with a self-contained review.

Notation

All intervals will be discrete, so for x, y ∈ Z, we have [x, y] = {z ∈ Z : x 6 z 6 y}.
For integers x and n with n > 1, let (x)n ∈ [0, n − 1] denote the least non-negative
representative for x modulo n. We use Cn to denote a cyclic group of order n. A finite
abelian group G has the form G ∼= Cn1⊕· · ·⊕Cnr with 1 < n1 | . . . | nr, where nr = exp(G)
is the exponent and r > 0 is the rank of G, which is the minimal cardinality of a
generating set for G. For r 6 2, an arbitrary rank at most two abelian group has the
form G ∼= Cn ⊕ Cmn with n,m > 1. When n > 2, so the rank r = 2, a (ordered) basis
for G is a pair (e1, e2) of elements e1, e2 ∈ G such that G = 〈e1〉 ⊕ 〈e2〉 ∼= Cn ⊕ Cmn.

Let G be an abelian group. In the tradition of Combinatorial Number Theory, a
sequence of terms from G is a finite, unordered string of elements from G. We let F(G)
denote the free abelian monoid with basis G, which consists of all (finite and unordered)
sequences S of terms from G written as multiplicative strings using the boldsymbol · .
This means a sequence S ∈ F(G) has the form

S = g1 · · · · · g`

with g1, . . . , g` ∈ G the terms in S. Then

vg(S) = |{i ∈ [1, `] : gi = g}|

denotes the multiplicity of the terms g in S, allowing us to represent a sequence S as

S =
∏•

g∈G
g[vg(S)],

where g[n] = g · · · · · g︸ ︷︷ ︸n denotes a sequence consisting of the term g ∈ G repeated n > 0

times. The maximum multiplicity of a term of S is the height of the sequence, denoted

h(S) = max{vg(S) : g ∈ G}.

The support of the sequence S is the subset of all elements of G that are contained in S,
that is, that occur with positive multiplicity in S, which is denoted

Supp(S) = {g ∈ G : vg(S) > 0}.

The length of the sequence S is

|S| = ` =
∑
g∈G

vg(S).
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A sequence T ∈ F(G) with vg(T ) 6 vg(S) for all g ∈ G is called a subsequence of S,
denoted T | S, and in such case, S ·T [−1] = T [−1] ·S denotes the subsequence of S obtained
by removing the terms of T from S, so vg(S · T [−1]) = vg(S)− vg(T ) for all g ∈ G.

Since the terms of S lie in an abelian group, we have the following notation regarding
subsums of terms from S. We let

σ(S) = g1 + · · ·+ g` =
∑
g∈G

vg(S)g

denote the sum of the terms of S and call S a zero-sum sequence when σ(S) = 0. A min-
imal zero-sum sequence is a zero-sum sequence that cannot have its terms partitioned
into two proper, nontrivial zero-sum subsequences. For n > 0, let

Σn(S) = {σ(T ) : T | S, |T | = n}, Σ6n(S) = {σ(T ) : T | S, 1 6 |T | 6 n}, and

Σ(S) = {σ(T ) : T | S, |T | > 1}

denote the variously restricted collections of subsums of S. The sequence S is zero-sum
free if 0 /∈ Σ(S). Finally, if ϕ : G→ G′ is a map, then

ϕ(S) = ϕ(g1) · · · · · ϕ(g`) ∈ F(G′)

denotes the sequence of terms from G′ obtained by applying ϕ to each term from S.

Background

Let G be a finite abelian group. The Davenport Constant for G is the minimal integer
D(G) such that any sequence of terms from G with length at least D(G) must contain a
nontrivial zero-sum subsequence. Equivalently, D(G) is the maximal length of a minimal
zero-sum sequence (see [21] [14]). Besides being of interest as an independent topic in
Combinatorial Number Theory, it also plays an important role when studying factorization
in Krull Domains and, more generally, in (Transfer) Krull Monoids. See [14] [15]. For a
general rank at most two abelian group G ∼= Cn ⊕ Cmn, where m, n > 1, we have [14,
Theorem 5.8.3]

D(Cn ⊕ Cmn) = mn+ n− 1.

This is a classical result of Olson [25] or van Emde Boas and Kruyswijk [6] whose proof
requires the constant η(G), defined as the minimal length such that any sequence of terms
from G with length at least η(G) contains a nontrivial zero-sum subsequence of length at
most exp(G). For rank at most two groups, we have [25] [6] [14, Theorem 5.8.3]

η(Cn ⊕ Cmn) = mn+ 2n− 2.

Specializing a particular case of a more general invariant [3] [13], Delorme, Ordaz and
Quiroz introduced [4] the constant s6`(G) defined as the minimal length such that

|S| > s6`(G) implies 0 ∈ Σ6`(S).
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For connections with Coding Theory, see [3]. The constant s6`(G) has also been studied
in various other contexts [7] [29] [11].

Since s6`(G) = ∞ for ` < exp(G) and coincides with the invariants η(G) and D(G)
for the values ` = exp(G) and ` = D(G), it may be viewed as a means of interpolating
these constants as ` ∈ [exp(G),D(G)]. For the case of rank two groups, Chunlin Wang
and Kevin Zhao determined its exact value [32]:

s6mn+n−1−k(Cn ⊕ Cmn) = mn+ n− 1 + k, for k ∈ [0, n− 1].

The associated inverse question is to characterize all extremal sequences of maximal length
mn + n − 2 + k with 0 /∈ Σ6mn+n−1−k(S). For k = 0, this means characterizing all zero-
sum free sequences of maximal length mn + n − 2 = D(G) − 1. For k = 1, this means
characterizing all minimal zero-sum sequences of maximal length mn+n−1 = D(G). For
k = n−1, this means characterizing all extremal sequences of length mn+2n−3 = η(G)−1
with 0 /∈ Σ6mn(S). The precise structure in all three of these cases is known.

For k 6 1, this was an involved undertaking achieved by combining the individual re-
sults of Gao, Geroldinger, Grynkiewicz, Reiher and Schmid from [8] [10] [31] [20] [28] with
the numerical verification of the case when m = 1 and n = 9 [2]. This characterization
has since proved quite useful, being employed in the proofs of several other results, e.g.,
[1] [12] [16] [17] [26] [30] [27].

For k = n−1, this was accomplished by Schmid [30]. For simplicity, we assume m = 1
in the following discussion. The group G ∼= Cn⊕Cn has Property C if every sequence S
with |S| = η(G)−1 = 3n−3 and 0 /∈ Σ6n(S) must have the form S = e

[n−1]
1 ·e[n−1]2 ·e[n−1]3 .

It was shown in [9] that, assuming Conjecture 1 holds for k = 1 in G (meaning, assuming
the structure of minimal zero-sums of length 2n−1 were known), then Property C holds for
G. Once this case in Conjecture 1 was resolved (as described above), this meant Property
C was established without condition. However, it was a surprisingly nontrivial question to
determine which e1, e2, e3 ∈ G would give rise to a sequence S = e

[n−1]
1 · e[n−1]2 · e[n−1]3 with

0 /∈ Σ6n(S). For n = p prime, a derivation of the precise characterization from Property C
can be found in [5], and the derivation of the precise characterization from Property C in
the general case (when n may be composite) follows as a particular case of a more general
result of Schmid [30]. The exact formulation is stated in Conjecture 1.4. In Section 2, we
give a short alternative proof of this case, deriving the precise characterization given in
Conjecture 1.4 from Property C using the arguments from [22].

The structure of sequences S of terms from Cn ⊕ Cn with |S| = 2n − 2 + k but
0 /∈ Σ62n−1−k(S) was studied in [23] [21] for k ∈ [2, n − 2]. In [23], the case when n is
prime and k 6 2n+1

3
was resolved, showing all such sequences must have the form

S = e
[n−1]
1 · e[n−1]2 · (e1 + e2)

[k]

for some basis (e1, e2) for G ∼= Cn⊕Cn. It was conjectured in [23] [32] that this should also
hold for k ∈ [2, n − 2] (we remark that the conjecture appeared in an earlier submitted
version of [23] authored only by Wang and Zhao), and the results of [21] extended this
conjecture to general n as follows, where we incorporate the already established cases
k 6 1 and k = n− 1 into the statement.
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Conjecture 1. Let n > 2, let G ∼= Cn ⊕ Cn, let k ∈ [0, n − 1], and let S be a sequence
of terms from G with

|S| = 2n− 2 + k and 0 /∈ Σ62n−1−k(S).

Then there exists a basis (e1, e2) for G such that the following hold.

1. If k = 0, then S · g satisfies Item 2, where g = −σ(S).

2. If k = 1, then S = e
[n−1]
1 ·

∏•
i∈[1,mn](xie1 + e2), for some x1, . . . , xmn ∈ [0, n− 1] with

x1 + · · ·+ xmn ≡ 1 mod n.

3. If k ∈ [2, n− 2], then S = e
[n−1]
1 · e[sn−1]2 · (e1 + e2)

[(m−s)n+k], for some s ∈ [1,m].

4. If k = n− 1, then S = e
[n−1]
1 · e[sn−1]2 · (xe1 + e2)

[(m−s)n+n−1], for some s ∈ [1,m] and
x ∈ [1, n− 1] with gcd(x, n) = 1.

In [21], a multiplicative property for the conjecture was established, showing that, if
the structure from Conjecture 1 holds for km in Cm ⊕ Cm and for kn in Cn ⊕ Cn, where
km ∈ [0,m − 1] and kn ∈ [0, n − 1], then Conjecture 1 also holds for k = kmn + kn in
Cmn ⊕Cmn. This reduced the characterization problem in Cn ⊕Cn to the case when n is
prime.

The characterization in the case Cn ⊕ Cmn with m > 2, even including a precise
statement of the potential structure for sequences of length mn + n − 2 + k avoiding a
nontrivial zero-sum of length at most mn + n − 1 − k, was completely open apart from
the boundary cases k 6 1 and k = n − 1. Our main result is Theorem 2.1, which fully
determines the structure of S for k in Cn ⊕ Cmn assuming Conjecture 1 holds for k in
Cn ⊕ Cn, as follows. Note, Theorem 2.2, handling the case k = n − 1, is due to Schmid
[30] and is incorporated into the statement of Theorem 2 for completeness.

Theorem 2. Let m > 1, let n > 3, let G ∼= Cn ⊕ Cmn, let k ∈ [2, n − 1] and let S be a
sequence of terms from G with

|S| = mn+ n− 2 + k and 0 /∈ Σ6mn+n−1−k(S).

If Conjecture 1 holds for k in Cn ⊕ Cn, then there exists a basis (e1, e2) for G with
ord(e2) = mn or a generating set {g1, g2} for G with ord(g1 + g2) = mn such that the
following hold.

1. If k ∈ [2, n− 2], then either

(a) S = e
[n−1]
1 · e[sn−1]2 · (e1 + e2)

[(m−s)n+k], for some s ∈ [1,m], or

(b) S = g
[n−1]
1 · g[n−1]2 · (g1 + g2)

[(m−1)n+k].

2. If k = n− 1, then either

(a) S = e
[n−1]
1 · e[sn−1]2 · (xe1 + e2)

[(m−s)n+n−1], for some s ∈ [1,m] and x ∈ [1, n− 1]
with gcd(x, n) = 1, or
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(b) S = g
[n−1]
1 · g[n−1]2 · (g1 + g2)

[(m−1)n+n−1].

Theorem 2 reduces the characterization in a general rank two abelian group to the
case Cn ⊕ Cn, which in turn is reduced to the case Cp ⊕ Cp with p > 11 prime by the
results of [21]. The reduction to the case Cn ⊕ Cn is the main aim of the paper and
emulates the strategy successfully used to characterize the extremal sequences for the
Davenport Constant (the case k 6 1), where the characterization problem was reduced
to case Cn ⊕ Cn by Schmid [31] and resolved in this case by the results from [8] [10] [20]
[28] (as well as the case n = 9 [2]). However, combining Theorem 2 with known cases in
Conjecture 1 yields many group Cn ⊕ Cmn where the structure of extremal sequences is
determined here without restriction. As several examples, we list the following corollaries.

Corollary 3. If m > 1 and n = 2s13s25s37s4 > 2 with s1, s2, s3, s4 > 0, then the conclusion
of Theorem 2 holds in Cn ⊕ Cmn for all k ∈ [2, n− 1].

Corollary 4. For any prime power n > 2 and m > 1, the conclusion of Theorem 2 holds
in Cn ⊕ Cmn for all 2 6 k 6 2n+1

3
.

Corollary 5. For n > 4 composite, m > 1 and d | n a proper, nontrivial divisor, the
conclusion of Theorem 2 holds in Cn⊕Cmn when k = n−d−1 > 2 or k = n−2d+1 > 2.

2 The case k = n − 1

As noted in the introduction, Conjecture 1 holding for k = 1 in G ∼= Cn⊕Cn implies that
Property C holds for G, meaning any sequence S of 3n− 3 terms from G ∼= Cn⊕Cn with
0 /∈ Σ6n(S) must have the form S = e

[n−1]
1 · e[n−1]2 · e[n−1]3 for some distinct e1, e2, e3 ∈ G.

The goal of this section is to give a new proof of the characterization of which elements
e1, e2, e3 ∈ G result in a sequence S = e

[n−1]
1 · e[n−1]2 · e[n−1]3 with 0 /∈ Σ6n(S). Clearly,

0 /∈ Σ6n(S) ensures ord(e1) = ord(e2) = ord(e3) = n. Thus there is some f1 ∈ G such
that (f1, e2) is a basis for G. Letting e1 = xf1 + ye2, we see that (e1, e2) is a basis for

G unless gcd(x, n) := n/h > 1. However, if this were the case, then T = e
[h]
1 · e[xh]2 is

a zero-sum subsequence of S for some x ∈ [0, n
h
− 1] having length |T | = h + xh 6 n,

contradicting that 0 /∈ Σ6n(S). Therefore (e1, e2) is a basis for G, and likewise (e1, e3) and
(e2, e3) must also be bases for G. However, obtaining further restriction on e1, e2 and e3
is much less trivial. We begin with the following lemma showing how the characterization
is related to a statement involving the index (see [22]) of the sequence (−x1) · (−x2) · 1,
where e3 = x1e1+x2e2, and continue afterwards with a series of lemmas modifying slightly
the main line of argument for the prime case from [22]

Lemma 6. Let G ∼= Cn ⊕ Cn with n > 2. Suppose (e1, e2) is a basis for G and S =

e
[n−1]
1 · e[n−1]2 · (x1e1 + x2e2)

[n−1], where x1, x2 ∈ [0, n− 1]. Then 0 /∈ Σ6n(S) if and only if
(−x1k)n + (−x2k)n + (k)n > n for every k ∈ [1, n− 1].

Proof. Consider an arbitrary zero-sum subsequence T of S and then let T = e
[k1]
1 · e[k2]2 ·

(x1e1 + x2e2)
[k], where k1, k2, k ∈ [0, n − 1]. Note we cannot have k = 0 (assuming T
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nontrivial) as (e1, e2) is a basis, so k ∈ [1, n − 1]. Then we have k1 = (−x1k)n and
k2 = (−x2k)n. Conversely, given any k ∈ [1, n−1], the subsequence T defined above with
k1 = (−x1k)n and k2 = (−x2k)n will be a nontrivial zero-sum. Now

|T | = k1 + k2 + k = (−x1k)n + (−x2k)n + (k)n.

If (−x1k)n+(−x2k)n+(k)n 6 n for some k ∈ [1, n−1], then the corresponding subsequence
T defined using k is a nontrivial zero-sum subsequence of length at most n, showing
0 ∈ Σ6n(S). On the other hand, if 0 ∈ Σ6n(S), then there is a nontrivial zero-sum

of the form T = e
[k1]
1 · e[k2]2 · (x1e1 + x2e2)

[k], for some k ∈ [1, n − 1], which satisfies
|T | = (−x1k)n + (−x2k)n + (k)n 6 n.

The following is special case of [22, Proposition 2.1.1].

Lemma 7. Let n > 2 and let x1, x2, x3 ∈ Z with x1 + x2 + x3 ≡ 0 mod n. There there
exists k ∈ [1, n− 1] with gcd(k, n) = 1 and (kx1)n + (kx2)n + (kx3)n 6 n.

Lemma 8. Let n > 2. For x ∈ [1, n− 1] with gcd(x, n) = 1, let

X(x) =

{⌈n
x

⌉
,

⌈
2n

x

⌉
, . . . ,

⌈
(x− 1)n

x

⌉}
⊆ [2, n− 1].

1. |X(x)| = x− 1.

2. Let d = bn
x
c. The difference between any two consecutive elements in X(x) is either

d or d+ 1 with minX(x) = d+ 1 and maxX(x) = n− d (for x > 2).

3. [2, n− 1] = X(x) ∪X(n− x) is a disjoint union.

4. Let ∆(u, x) = (ux)n − ((u − 1)x)n. For every u ∈ [1, n − 1], ∆(u, x) ∈ {x, x − n}
with u ∈ X(x) iff ∆(u, x) = x− n.

Proof. Item 1–3 are given in [22, Lemma 2.4]. For Item 4, we have −n < ∆(u, x) < n, and
since ∆(u, x) ≡ x mod n, it follows that ∆(u, x) ∈ {x, x − n}. Let u ∈ Z and t = bux

n
c,

so

tn 6 ux < (t+ 1)n and ux = (ux)n + tn = ((u− 1)x)n + ∆(u, x) + tn.

Hence ∆(u) = x − n when (u − 1)x = ((u − 1)x)n + (t − 1)n < tn, and ∆(u) = x when
(u− 1)x = ((u− 1)x)n + tn > tn. Thus ∆(u) = x− n if and only if (u− 1)x < tn. Since
tn 6 ux always holds, this is equivalent to tn

x
6 u < tn

x
+ 1, and as u is an integer, this is

equivalent to u = d tn
x
e. Therefore ∆(u, x) = x−n if and only if u = d tn

x
e, where t = bux

n
c.

Now restrict to u ∈ [1, n − 1]. Since u < n, we have t = bux
n
c 6 x − 1. Since u, x > 1,

we have t = bux
n
c > 0. However, u = d tn

x
e with u > 1 forces t 6= 0, while u = d tn

x
e = tn+r

x

with t ∈ [1, x − 1] (and r ∈ [0, x − 1]) ensures t = ux−r
n

= bux
n
c (as 0 6 r < x 6 n). As

a result, for u ∈ [1, n− 1], we find that ∆(u, x) = x− n if and only if u = d tn
x
e for some

t ∈ [1, x− 1], as desired.
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Lemma 9. Let n > 2 and let x1, x2, x3 ∈ Z with gcd(xi, n) = 1 for all i ∈ [1, 3]. If
(kx1)n + (kx2)n + (kx3)n > n for every k ∈ [1, n− 1], then xi + xj ≡ 0 mod n for some
distinct i, j ∈ [1, 3].

Proof. If gcd(x1+x2+x3, n) 6= 1, then there exists some r ∈ [1, n−1] such that rx1+rx2+
rx3 ≡ 0 mod n. Applying Lemma 7 to rx1, rx2, rx3 ∈ Z, we find some s ∈ [1, n− 1] with
gcd(s, n) = 1 and (srx1)n+(srx2)n+(srx3)n 6 n. But then, setting k = (sr)n ∈ [0, n−1],
we have (kx1)n+(kx2)n+(kx3)n 6 n with k = (sr)n 6= 0 since r ∈ [1, n−1] and gcd(s, n) =
1, which is contrary to hypothesis. Therefore, we conclude that gcd(x1 + x2 + x3, n) = 1.
As a result, replacing x1, x2, x3 ∈ Z with sx1, sx2, sx3 ∈ Z, where s ∈ Z is an integer
congruent to the inverse of x1 + x2 + x3 modulo n, we can w.l.o.g. assume

x1 + x2 + x3 ≡ 1 mod n.

Replacing each xi by (xi)n, we can w.l.o.g. assume x1, x2, x3 ∈ [1, n − 1]. If n = 2, then
x1 = x2 = x3 = 1, and the lemma holds. Therefore we may assume n > 3.

Claim 1. For every u ∈ [1, n− 1],

(ux1)n + (ux2)n + (ux3)n = n+ u.

Proof. Indeed, (ux1)n+(ux2)n+(ux3)n ≡ u(x1+x2+x3) ≡ u, so (ux1)n+(ux2)n+(ux3)n =
kn+u for some k ∈ {0, 1, 2}. By hypothesis kn+u > n+1, so (ux1)n+(ux2)n+(ux3)n ∈
{n + u, 2n + u} for every u ∈ [1, n − 1]. Since u ∈ [1, n − 1] and gcd(xi, n) = 1 for
every i ∈ [1, 3], we have (uxi)n 6= 0 and ((n − u)xi)n = n − (uxi)n for all i ∈ [1, 3].
Consequently, if (ux1)n + (ux2)n + (ux3)n = 2n + u for some u ∈ [1, n− 1], then we find
((n−u)x1)n + ((n−u)x2)n + ((n−u)x3)n =

(
n− (ux1)n

)
+
(
n− (ux1)n

)
+
(
n− (ux1)n

)
=

3n− (2n+ u) = n− u 6 n, which is contrary to hypothesis. (Claim 1)

Let Xi = X(xi) and ∆(u, xi) for i ∈ [1, 3] be as defined in Lemma 8. The special case
u = 1 in Claim 1 ensures

x1 + x2 + x3 = n+ 1.

Hence, if xk = 1 for some k ∈ [1, 3], then the desired conclusion follows with {i, j} =
[1, 3] \ k, so we may assume

x1, x2, x3 > 2, (1)

ensuring X1, X2 and X3 are each nonempty (by Lemma 8.1).

Claim 2. [2, n− 1] = X1 ∪X2 ∪X3 is a disjoint union.

Proof. By Claim 1, for every u ∈ [2, n− 1], we have

3∑
i=1

∆(u, xi) =
3∑
i=1

(uxi)n −
3∑
i=1

((u− 1)xi)n = (n+ u)− (n+ u− 1) = 1.

On the other hand, if u belongs to s ∈ [0, 3] of the sets X1, X2 and X3, then Lemma 8.4
implies 1 =

∑3
i=1 ∆(u, xi) = x1+x2+x3−sn = 1+(1−s)n, forcing s = 1, which completes

the claim as Xi = X(xi) ⊆ [2, n− 1] holds trivially for any xi ∈ [1, n− 1]. (Claim 2)
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Note that 2 ∈ Xi = X(xi) precisely when d n
xi
e = 2, i.e., when n

2
6 xi 6 n − 1.

Consequently, in view of Claim 2 and n > 3, we can w.l.o.g. assume

x2, x3 <
n

2
6 x1.

Let x′1 = n− x1 ∈ [1, n
2
] and set X ′1 = X(x′1). By Lemma 8.3 and Claim 2, we have

X ′1 = [2, n− 1] \X1 = X2 ∪X3, (2)

with the union disjoint. Hence, since X2 and X3 are nonempty, as noted above, it follows
that X ′1 is also nonempty, ensuring x′1 > 2 (by Lemma 8.1).

As in Lemma 8, let d2 = b n
x2
c, d3 = b n

x3
c and d′1 = b n

x′1
c. Note d2, d3, d

′
1 > 2 since

x2, x3, x
′
1 6

n
2
. By Lemma 8.2, the minimal element in Xi for i = 2, 3 (resp. the minimal

element in X ′1) is di + 1 (resp. d′1 + 1). Since X ′1 = X2 ∪X3, the minimal element d′1 + 1
in X ′1 must either equal the minimal element in X2 or the minimal element in X3, say
w.l.o.g. the former, in which case d′1 + 1 = d2 + 1 ∈ X2. Denote this joint value by
d := d′1 = d2.

Claim 3. X ′1 = X2.

Proof. By (2), we have X2 ⊆ X ′1, and the first element of X ′1 is in X2 by assumption,
equal to the first element of X2. Let d + 1 = z1 < z2 < · · · < zx′1−1 denote the elements
of X ′1. Assume zk ∈ X2 for k < x′1 − 1. By Lemma 8.2 applied to X ′1, since d > 2,
zk+1 is one of the values zk + d or zk + d + 1, and exactly one of these elements is in
X ′1. But d2 = d, so Lemma 8.2 applied to X2 yields that the next element of X2 after
zk ∈ X2 is also either zk + d or zk + d + 1. Since only one of these two possibilities lies
in X ′1, namely the value between them equal to zk+1, we are forced to conclude from
X2 ⊆ X ′1 that the next element in X2 after zk ∈ X2 is zk+1 ∈ X2. This shows, via
induction on k, that X2 equals the first |X2| elements of X ′1. However, Lemma 8.2 implies
that maxX2 = n − d2 = n − d = n − d′1 = maxX ′1, which combined with the previous
conclusion forces X ′1 = X2. (Claim 3)

Since X ′1 = X2 ∪ X3 is a disjoint union, we conclude from Claim 3 that X3 = ∅,
whence x3 − 1 = |X3| = 0 by Lemma 8.1, contradicting (1).

Proposition 10. For any n > 2, Conjecture 1.4 holds for k = n− 1 in Cn ⊕ Cn.

Proof. Let G ∼= Cn⊕Cn and let S ∈ F(G) be a sequence with |S| = 3n−3 and 0 /∈ Σ6n(S).

Then S = e
[n−1]
1 · e[n−1]2 · e[n−1]3 for some e1, e2, e3 ∈ G which pairwise form bases for G, as

noted at the start of Section 2. Write e3 = x1e1 +x2e2 with x1, x2 ∈ [1, n−1]. By Lemma
6, the hypothesis that 0 /∈ Σ6n(S) is equivalent to (−x1 · k)n + (−x2 · k)n + (k · 1)n > n
holding for all k ∈ [1, n − 1]. Since (e1, e3) and (e2, e3) are both bases, we must have
gcd(x1, n) = gcd(x2, n) = 1. Applying Lemma 9 using the elements −x1, −x2 and 1,
we deduce that either x1 + x2 ≡ 0 mod n, or x1 = 1, or x2 = 1. If x1 = 1, then the
conclusion of Conjecture 1.4 holds using the basis (e2, e1). If x2 = 1, then the conclusion of
Conjecture 1.4 holds using the basis (e1, e2). If x1 +x2 ≡ 0 mod n, then e3 = x1e1−x1e2.
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In this final case, letting y ∈ [1, n − 1] be the multiplicative inverse of x1 modulo n, we
find that ye3 = e1 − e2 and e1 = ye3 + e2, in which case Conjecture 1.4 holds using the
basis (e3, e2), which completes the proof.

3 Reduction to the Diagonal Case

The goal of this section is to prove Theorem 2.1 as well as the three corollaries giving
examples where our results hold without restriction. For the proof, we will need the follow-
ing characterization of maximal length minimal zero-sums in a cyclic group [14][Corollary
5.4.6], [15][Corollary 4.4].

Theorem 11. Let n > 2, let G ∼= Cn. If S ∈ F(G) is a minimal zero-sum sequence of
length |S| = D(G) = n, then S = g[n] for some g ∈ G with ord(g) = n. If S ∈ F(G) is a
zero-sum free sequence of length |S| = D(G)− 1 = n− 1, then S = g[n−1] for some g ∈ G
with ord(g) = n

We continue with the proof of Theorem 2.1.

Proof of Theorem 2.1. Let G ∼= Cn ⊕ Cmn and let ϕ : G→ G be a homomorphism with

kerϕ ∼= Cm and ϕ(G) ∼= Cn ⊕ Cn.

Since k ∈ [2, n− 2], we have n > 4. Let S ∈ F(G) be a sequence with

|S| = mn+ n− 2 + k and 0 /∈ Σ6mn+n−1−k(S). (3)

Define a block decomposition of S to be a factorization

S = W ·W1 · · · · ·Wm−1

with 1 6 |Wi| 6 n and ϕ(Wi) zero-sum for each i ∈ [1,m − 1]. Since s6n(ϕ(G)) =
s6n(Cn ⊕ Cn) = 3n− 2 and |S| = (m− 2)n+ 3n− 2 + k > (m− 2)n+ 3n− 2, it follows
by repeated application of s6n(ϕ(G)) that S has a block decomposition.

Claim A. If S = W ·W1 · · · · ·Wm−1 is a block decomposition of S, then |Wi| = n for
all i ∈ [1,m − 1], |W | = 2n − 2 + k, 0 /∈ Σ62n−1−k(ϕ(W )), and 0 /∈ Σ6n−1(ϕ(S)). In
particular, Conjecture 1 holds for ϕ(W ).

Proof. Suppose 0 ∈ Σ62n−1−k(ϕ(W )). Then there is a nontrivial subsequence W0 | W with
|W0| 6 2n−1−k and ϕ(W0) zero-sum. Now σ(W0)·σ(W1)·· · ··σ(W2m−2+km) is a sequence
of m terms from kerϕ ∼= Cm. Since D(Cm) = m, it follows that it has a nontrivial zero-
sum subsequence, say

∏•
i∈I σ(Wi) for some nonempty I ⊆ [0,m − 1]. But then

∏•
i∈IWi

is a nontrivial zero-sum subsequence of S with |
∏•

i∈IWi| 6 (m − 1)n + (2n − 1 − k) =
mn+ n− 1− k, contrary to (3). So we instead conclude that 0 /∈ Σ62n−1−k(ϕ(W )).
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As a result, since s62n−1−k(ϕ(G)) = s62n−1−k(Cn⊕Cn) = 2n−1+k, and since |Wi| 6 n
for all i ∈ [1,m− 1], it follows that

2n− 2 + k = mn+ n− 2 + k − (m− 1)n 6 |S| −
m−1∑
i=1

|Wi| = |W | 6 2n− 2 + k,

forcing equality to hold in all estimates, i.e., |Wi| = n for i ∈ [1,m − 1] and |W | =
2n − 2 + k. If 0 ∈ Σ6n−1(ϕ(S)), then we can find a nontrivial subsequence W ′

1 | S with
|W ′

1| 6 n− 1 and ϕ(W ′
1) zero-sum. Applying the argument used to show the existence of

a block decomposition, we obtain a block decomposition S = W ′ ·W ′
1 · · · · ·W ′

m−1 with
|W ′

1| 6 n − 1, contradicting what was just shown. Therefore 0 /∈ Σ6n−1(ϕ(S)). Finally,
since |W | = 2n − 2 + k and 0 /∈ Σ62n−1−k(ϕ(W )) with Conjecture 1 holding for k in
Cn ⊕ Cn by hypothesis, it follows that Conjecture 1 holds for ϕ(W ). (Claim A)

Suppose
S = W̃ ·W0 ·W1 · · · · ·Wm−1

with each ϕ(Wi) a nontrivial zero-sum for i ∈ [0,m − 1] and |W̃ | > 2k − n − 1. We call
this a weak block decomposition of S with associated sequence

Sσ = σ(W0) · σ(W1) · · · · · σ(Wm−1) ∈ F(kerϕ).

Since kerϕ ∼= Cm and |Sσ| = m = D(Cm), it follows that Sσ contains a nontrivial zero-
sum. In view of Claim A, we have |Wi| > n for all i ∈ [0,m−1]. As a result, if Sσ contained
a proper, nontrivial zero-sum subsequence, then S would have a nontrivial zero-sum of
length at most |S| − |W̃ | − n 6 (mn+ n− 2 + k)− (2k − n− 1)− n = mn+ n− 1− k,
contrary to (3). We conclude that the associated sequence Sσ must be a minimal zero-sum
of length D(Cm) = m, in which case Theorem 11 implies that there is some g0 ∈ kerϕ
with ord(g0) = m such that

σ(W0) = σ(W1) = · · · = σ(Wm−1) = g0. (4)

Now let S = W ·W1 ·· · ··Wm−1 be a fixed but otherwise arbitrary block decomposition.
In view of Claim A, we have |W | = 2n− 2 + k with 0 /∈ Σ62n−1−k(ϕ(W )) and Conjecture
1 holding for ϕ(W ) using k ∈ [2, n − 2]. As a result, there is a basis (e1, e2) for ϕ(G) ∼=
Cn ⊕ Cn such that

ϕ(W ) = e
[n−1]
1 · e[n−1]2 · (e1 + e2)

[k],

and there is a subsequence W0 | W with

ϕ(W0) = e
[n−k]
1 · e[n−k]2 · (e1 + e2)

[k].

Setting W̃ = W ·W [−1]
0 , so

ϕ(W̃ ) = e
[k−1]
1 · e[k−1]2 ,
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we find |W̃ | = 2k − 2 > 2k − n− 1 (as n > 2), meaning S = W̃ ·W0 ·W1 · · · · ·Wm−1 is
a weak block decomposition with associated sequence Sσ = σ(W0) · σ(W1) · · · · · σ(Wm−1)
satisfying (4) for some g0 ∈ kerϕ with ord(g0) = m.

Claim B. For any j ∈ [1,m − 1], if W ′
j | W ·Wj is a subsequence with |W ′

j| = n and

ϕ(W ′
j) zero-sum, then ϕ(W ·Wj · (W ′

j)
[−1]) = ϕ(W ) = e

[n−1]
1 · e[n−1]2 · (e1 + e2)

[k].

Proof. We can w.l.o.g. assume j = 1. Setting W ′ = W · W1 · (W ′
1)

[−1], we find that
S = W ′ ·W ′

1 ·W2 · · · · ·Wm−1 is a block decomposition, so Conjecture 1 must hold for
ϕ(W ′) by Claim A with respect to some basis (f 1, f 2), meaning ϕ(W ·W1 · (W ′

1)
[−1]) =

ϕ(W ′) = f
[n−1]
1 · f [n−1]

2 · (f 1 + f 2)
[k]. We need to show {f 1, f 2} = {e1, e2}. Assuming

by contradiction that this fails, we can w.l.o.g. assume f 1 /∈ {e1, e2}, ensuring f1 has
multiplicity at least n− 1 in ϕ(W ·W1). Note, since the n-term zero-sum ϕ(W1) cannot
contain a term with multiplicity exactly n − 1, any term g /∈ {e1, e2} with multiplicity
at least n − 1 in ϕ(W · W1) must either have ϕ(W1) = g[n] or else g = e1 + e2 with
ve1+e2(ϕ(W1)) > n− 1− k > 1. In both cases, there cannot be a second term g′ /∈ {e1, e2}
with multiplicity at least n − 1, the former since ve1+e2(W0 ·W1) = k 6 n − 2, and the
latter since ϕ(W1) cannot contain a term with multiplicity exactly n− 1. As a result, we
conclude that e1, e2 and f 1 are the only terms with multiplicity at least n−1 in ϕ(W ·W1),
and thus w.l.o.g. f 2 = e2.

Suppose f 1 = e1 + e2. Then ϕ(W ′) = (e1 + e2)
[n−1] · e[n−1]2 · (e1 + 2e2)

[k], and since

n > 4 ensures e1 + 2e2 6= e1 with ϕ(W ′
1) an n-term zero-sum, it follows that ϕ(W ′

1) = e
[n]
1 .

In such case, ϕ(W1) = (e1 + e2)
[n−1−k] · e1 · (e1 + 2e2)

[k], which is only zero-sum for k = 1,
contradicting that k ∈ [2, n− 2]. So we conclude that f 1 6= e1 + e2, in which case we must

instead have ϕ(W1) = f
[n]

1 .

In this case, ϕ(W ′) = f
[n−1]
1 · e[n−1]2 · (f 1 + e2)

[k] with f 1 + e2 ∈ {e1, e1 + e2}. Thus
either f 1 = e1 − e2 or e1. Since f 1 6= e1, this means f 1 = e1 − e2 6= e1 + e2 (as n > 3),

ϕ(W ′) = f
[n−1]
1 ·e[n−1]2 ·e[k]1 = (e1−e2)[n−1] ·e[n−1]2 ·e[k]1 and ϕ(W ′

1) = e
[n−1−k]
1 ·(e1+e2)

[k] ·f 1.
Hence, since ϕ(W ′

1) is an n-term zero-sum, it follows that e1 − e2 = f 1 = e1 − ke2,
contradicting that k ∈ [2, n− 2]. (Claim B)

Claim C. ϕ(Wj) ∈ {e[n]1 , e
[n]
2 , (e1 + e2)

[n]} for every j ∈ [1,m− 1].

Proof. Since each ϕ(Wj), for j ∈ [1,m − 1], is a zero-sum of length n by Claim A, it
suffices to show Supp(ϕ(W1 · · · · · Wm−1)) ⊆ {e1, e2, e1 + e2}. Let g ∈ Supp(Wj) and
j ∈ [1,m − 1] be arbitrary. Since 0 /∈ Σ6n−1(ϕ(S)) by Claim A and |W ·Wj · g[−1]| =
3n − 3 + k > 3n − 2 = s6n(Cn ⊕ Cn), there is subsequence W ′

j | W · Wj · g[−1] with

|W ′
j| = n, ϕ(W ′

1) zero-sum and g ∈ Supp(W ·Wj · (W ′
j)

[−1]). Thus Claim B ensures that
ϕ(g) ∈ {e1, e2, e1 + e2}, and as g ∈ Supp(Wj) and j ∈ [1,m− 1] were arbitrary, the claim
follows. (Claim C)

Claim D. There are g1, g2 ∈ G with ϕ(g1) = e1, ϕ(g2) = e2 and also Supp(S) =
{g1, g2, g1 + g2}.
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Proof. Let x ∈ Supp(W̃ ) and y ∈ Supp(Wj), for some j ∈ [0,m − 1], be arbitrary
terms with ϕ(x) = ϕ(y) = e1, which exist as k > 2 and ve1(ϕ(W0)) = n − k > 1. If

we set W̃ ′ = W̃ · x[−1] · y and W ′
j = Wj · y[−1] · x, we find that S = W̃ ′ · W1 · · · · ·

Wj−1 ·W ′
j ·Wj+1 · · · · ·Wm−1 is a weak product decomposition with associated sequence

Sσ ·σ(Wj)
[−1] ·σ(W ′

j) = g
[m−1]
0 ·σ(W ′

j). As a result, Theorem 11 implies that g0− y+x =
σ(Wj) − y + x = σ(W ′

j) = g0, whence x = y. This shows that all terms x ∈ Supp(S)
with ϕ(x) = e1 are equal to the same element (say) g1 ∈ G. The same argument shows
that all terms x ∈ Supp(S) with ϕ(x) = e2 are equal to the same element (say) g2 ∈ G.
Let z ∈ Supp(W0 · · · · ·Wm−1) be an arbitrary term with ϕ(z) = e1 + e2, which exists as
ve1+e2(ϕ(W0)) = k > 2. Let g ∈ Supp(Wj) with j ∈ [0,m − 1]. Since k > 2, we have

g1 · g2 | W̃ . If we set W̃ ′ = W̃ · g[−1]1 · g[−1]2 · z and W ′
j = Wj · z[−1] · g1 · g2, we find that

S = W̃ ′ ·W1 · · · · ·Wj−1 ·W ′
j ·Wj+1 · · · · ·Wm−1 is a weak product decomposition with

associated sequence Sσ · σ(Wj)
[−1] · σ(W ′

j) = g
[m−1]
0 · σ(W ′

j). As a result, Theorem 11
implies that g0 − z + g1 + g2 = σ(Wj) − z + g1 + g2 = σ(W ′

j) = g0, whence z = g1 + g2.
This shows that all terms x ∈ Supp(W0 · · · · ·Wm−1) with ϕ(z) = e2 are equal to the same

element g1 + g2 ∈ G. Since, by definition of W̃ , there are no terms z ∈ Supp(W̃ ) with
ϕ(z) = e1 + e2, the claim follows. (Claim D)

In view of Claim D and (4), we find that

g0 = σ(W0) = (n− k)g1 + (n− k)g2 + k(g1 + g2) = ng1 + ng2. (5)

Since ϕ(g1+g2) = e1+e2 has order n, it follows that n divides ord(g1+g2), which, combined
with n(g1 +g2) = g0 having ord(g0) = m, forces ord(g1 +g2) = mn. If 〈g1, g2〉 = G′ were a
proper subgroup ofG ∼= Cn⊕Cmn, then ord(g1+g2) = mn ensures that 〈g1, g2〉 ∼= Cn′⊕Cmn
for some proper divisor n′ | n. In such case, S would be a sequence of terms from
G′ ∼= Cn′ ⊕Cmn with length |S| = (m+ 1)n− 2 + k > mn+ 2n′− 2 + k > η(G′), ensuring
that S has a zero-sum of length at most mn, contrary to (3). Therefore 〈g1, g2〉 = G,
meaning {g1, g2} is a generating set for G.

If there are i, j ∈ [1,m−1] with ϕ(Wi) = e
[n]
1 and ϕ(Wj) = e

[n]
2 , then Claim D ensures

that Wi = g
[n]
1 and Wj = g

[n]
2 . Combined with (4) and (5), this implies ng1 + ng2 =

g0 = σ(Wi) = ng1 and ng1 + ng2 = g0 = σ(Wj) = ng2, whence ng1 = ng2 = 0 and
g0 = ng1 + ng2 = 0, contradicting that ord(g0) = m > 2. Therefore we can w.l.o.g.
assume

W1,W2, . . . ,Wm−1 ∈ {g[n]2 , (g1 + g2)
[n]}.

If W1 = · · · = Wm−1 = (g1 + g2)
[n], then Theorem 2.1(b) holds, as desired. So we can

w.l.o.g assume W1 = g
[n]
2 , in which case (4) and (5) yield ng1 + ng2 = g0 = σ(W1) = ng2,

implying
ng1 = 0.

Let s− 1 ∈ [1,m− 1] be the number of i ∈ [1,m− 1] with Wi = g
[n]
2 . Then

S = g
[n−1]
1 · g[sn−1]2 · (g1 + g2)

[(m−s)n+k].
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Since ng1 = 0, we have ord(g1) 6 n. Thus

n2m = |G| = |〈g1, g2〉| =
|〈g1〉| · |〈g2〉|
|〈g1〉 ∩ 〈g2〉|

6 n(mn),

forcing equality to hold in all above estimates. As a result, ord(g1) = n, ord(g2) = mn
and 〈g1〉 ∩ 〈g2〉 = {0}, meaning (g1, g2) is a basis for G, and now Theorem 2.1(a) holds,
completing the proof.

To conclude the paper, we note that Corollaries 3, 4 and 5 follow immediately by com-
bining Theorem 2 with the respective result from [21, Corollaries 1.3, 1.4 and 1.5]. These
corollaries represent the cases in [21] where Conjecture 1 was established unconditionally
for C2

n.
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