
ON THE LOWER BOUNDS OF DAVENPORT CONSTANT

CHAO LIU

Abstract. Let G = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1| . . . |nr be a finite abelian

group. The Davenport constant D(G) is the smallest integer t such that every
sequence S over G of length |S| ≥ t has a non-empty zero-sum subsequence.

It is a starting point of zero-sum theory. It has a trivial lower bound D∗(G) =

n1 + · · ·+nr−r+1, which equals D(G) over p-groups. We investigate the non-
dispersive sequences over groups Cr

n, thereby revealing the growth of D(G)−
D∗(G) over non-p-groups G = Cr

n⊕Ckn with n, k 6= 1. We give a general lower

bound of D(G) over non-p-groups and show that if G is an abelian group with
exp(G) = m and rank r, fix m > 0 a non-prime-power, then for each N > 0

there exists an ε > 0 such that if |G|/mr < ε, then D(G)− D∗(G) > N .

1. Introduction and main results

The Davenport constant has been studied since the 1960s. It naturally occurs in
various branches of combinatorics, number theory, and geometry (see [10, Chapter
5] and [7]). Early work on the Davenport constant and on the Erdős-Ginzburg-Ziv
Theorem are considered as starting points of zero-sum theory. The goal of the
present paper is to provide new lower bounds for the Davenport constant.

Let G be an additively written finite abelian group, say G ∼= Cn1
⊕ · · · ⊕ Cnr

,
where r = r(G) is the rank of G and 1 < n1| . . . |nr, and set D∗(G) = 1+

∑r
i=1(ni−

1). If S = g1 · . . . · g` is a sequence over G, then |S| = ` is its length and S is called
a zero-sum sequence if its sum σ(S) = g1 + · · · + g` is equal to 0. The Davenport
constant D(G) of G is the smallest integer ` ∈ N such that every sequence S over G
of length |S| ≥ ` has a nonempty zero-sum subsequence. A straightforward example
shows that D∗(G) ≤ D(G). Already in the 1960s it was proved that equality holds
for p-groups and for groups having rank r(G) ≤ 2 (see [10, Chapter 5]). Here we
refer to a couple of papers ([1, 2, 13, 15, 16], [9, Corollary 4.2.13]) of the last decade
offering a growing list of groups G satisfying D(G) = D∗(G). However, it is still
open whether or not equality holds for groups of rank three or for groups of the
form Crn.

The first example of D(G) > D∗(G) is due to P.C. Baayen in 1969. Let G =
C4k

2 ⊕ C4k+2 with k ∈ N+, then D(G) ≥ D∗(G) + 1 ([3, Theorem 8.1]). We briefly
introduce some works on the lower bounds of Davenport constant.

(1) Let G = C
(k−1)n+ρ
n ⊕ Ckn with n, k ≥ 2, gcd(n, k) = 1 and 0 ≤ ρ ≤ n− 1.

(a) If ρ ≥ 1 and ρ 6≡ n (mod k), then D(G) ≥ D∗(G) + ρ.
(b) If ρ ≤ n− 2 and x(n− ρ+ 1) 6≡ n (mod k) for any x ∈ [1, n− 1], then

D(G) ≥ D∗(G) + ρ+ 1. (Emde Boas and Kruyswijk, 1969)
(2) Let G = Cm ⊕ C2

n ⊕ C2n with m,n ∈ N≥3 odd and m|n. Then D(G) ≥
D∗(G) + 1. (Geroldinger and Schneider, [12], 1992)
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(3) Let G = Cr−12 ⊕C2k with k > 1 odd. Then D(G)−D∗(G) ≥ max{log2 r −
α(k) − 2k + 1, 0}, where α(k) = i iff 2i−1 + 1 < k ≤ 2i + 1. (Mazur, [19],
1992)

(4) Let G = Ci2⊕C5−i
2n with i ∈ [1, 4] and n ≥ 3 odd. Then D(G) ≥ D∗(G) + 1.

(See [6, 11, 12] for i = 2, i = 1 and i ∈ {3, 4} separately)

The third result shows the growth of D(G)−D∗(G) over G = Cr−12 ⊕C2k with k
odd. The author, Mazur, also asked if there are similar results when k is even [19].

This paper will show the growth of D(G)−D∗(G) over non-p-groupsG = Crn⊕Ckn
with any n, k 6= 1 (see Theorem 4.3 and Corollary 4.4). We show D(G) − D∗(G)
grows at least logarithmically with respect to r for a fixed n. For the cases of
gcd(k, n) 6= 1, this is the first time to prove D(G) = D∗(G) false. We show that
D(G) − D∗(G) > 0 can happen even if the exponent of G is arbitrarily large (see
Remark 4.5). So Mazur’s result is improved and more results are derived.

We prove the result with a new method. By Lemma 4.1, this paper connects the
lower bounds of Davenport constant to the study of non-dispersive sequence, which
goes back to a conjecture of Graham reported in [4]. A sequence S over G is called
non-dispersive if all nonempty zero-sum subsequences of S have the same length.
In 1976, Erdős and Szemerédi [4] proved that if S is a non-dispersive sequence over
Cp of length p, then S takes at most two distinct values, where p is a sufficiently
large prime. Gao et al. [5] and Grynkiewicz [17] independently improved this result
to all positive integers. A related question was naturally proposed by Girard [14]
to determine the longest length of non-dispersive sequences over any group G. The
answer is known for group Cr2 (see [8]). We investigate non-dispersive sequences
over groups Crn with n ≥ 2 (see Theorem 3.1), thereby improving the lower bounds
of Davenport constant over Crn ⊕ Ckn.

We also give general lower bounds for all non-p-groups (see Theorem 4.6) and
some other interesting corollaries.

2. Preliminaries

Our notation and terminology of sequences over abelian groups is consistent with
[10, 18].

Let n ∈ N≥2 and set n = pq for some prime p and some q ∈ [1, n]. For any ` ∈ N+,
we define θ(`; p), ω(`;n, p) and M(`; p, q) as follows through out this paper.

1.

θ(`; p) =

{
2(p`−1)
p−1 − `, if p > 2

2` − 1− `, if p = 2
.

2.

ω(`;n, p) =

{
p`−1n, if p > 2

2`−2n, if p = 2
.

3. For any ` ∈ N+, the set M(`; p, q) is constructed by a recursive algorithm:

(i) M(1; p, q) =

{
{q, (p− 1)q}, if p > 2

{q}, if p = 2
.

(ii) M(`+1; p, q) = M(`; p, q)×A∪{0}`×M(1; p, q), where A = {0, q, . . . , (p−
1)q}.

Remark 2.1. We can use a direct way to construct M(`) for ` ∈ N+, apart from
the recursive algorithm given before. In (4), we can let as = 1 and derive that

M(`) =

`−1⋃
t=0

{0}t ×M(1)×A`−t−1.
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Hence it follows a direct way to construct the non-dispersive sequences (in Theorem
3.1) and zero-sum free sequences with the techniques in Lemma 4.1.

Let |w|n denote the least nonnegative residue of an integer w modulo n. Let |B|
denote the cardinality of a set B.

The elements of M(`; p, q) are `-tuples of integers. We list the elements of
M(`; p, q) in some fixed but arbitrary order. Then M(`; p, q)[i, j] denotes the i-
th entry of the j-th element of M(`; p, q). We often fix some n, p and q before
considering θ(`; p), ω(`;n, p) and M(`; p, q). For convenience, we might omit the
parameters “n”, “p” and “q” when no misunderstanding is likely to occur. Thus,
θ(`), ω(`) and M(`)[i, j] will mean θ(`; p), ω(`;n, p) and M(`; p, q)[i, j] unless oth-
erwise stated.

Proposition 2.2. Let n ∈ N≥2 and set n = pq for some prime p and some q ∈
[1, n]. For any ` ∈ N+, M(`; p, q) has following three properties:

i. |M(`)| = θ(`) + `.
ii. For any 1 ≤ a1 < · · · < as ≤ ` and any vi ∈ [1, p − 1] with ai, vi ∈ N+ and

i ∈ [1, s], we have

|M(`)|∑
j=1

∣∣ s∑
i=1

viM(`)(ai, j)
∣∣
n

= ω(`).

iii.
|M(`)|∑
j=1

∣∣− s∑
i=1

viM(`)[ai, j]
∣∣
n

=

|M(`)|∑
j=1

∣∣ s∑
i=1

viM(`)[ai, j]
∣∣
n
.

Proof.

1) By the definition of M(`) we can derive that |M(` + 1)| = |M(`)| · p + |M(1)|,
thus |M(`)| = (p`−1)|M(1)|

p−1 = θ(`) + `.

2) Case 1. ` = 1.
In this case, s = 1 and a1 = 1. By the definitions of M(1) and v1, it is easy

to infer that
|M(1)|∑
j=1

∣∣v1M(1)[1, j]
∣∣
n

=

{
pq, if p > 2

q, if p = 2
.

Case 2. ` ≥ 2 and as = `.
By the rules of Cartesian product and the definition of M(1), we derive that

M(`) = M(`− 1)×A ∪ {0}`−1 ×M(1)

= (

p−1⋃
t=0

M(`− 1)× {tq}) ∪ {0}`−1 ×M(1).

Consequently,

(1)

|M(`)|∑
j=1

∣∣ s∑
i=1

viM(`)[ai, j]
∣∣
n

=

p−1∑
t=0

|M(`−1)|∑
j=1

∣∣ s−1∑
i=1

viM(`− 1)[ai, j] + vstq
∣∣
n

+

|M1|∑
j=1

∣∣0 + vsM(1)[1, j]
∣∣
n
.
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Note that, for any x ∈ {0, q, . . . , (p − 1)q}, by vs ∈ [1, p − 1], we have
gcd(vs, p) = 1. Thus

(2)

p−1∑
t=0

|x+ vstq|n = 0 + q + · · ·+ (p− 1)q =
(p− 1)pq

2
.

Every M(`− 1)[ai, j] is in {0, q, . . . , (p− 1)q}. Therefore

(3)

s−1∑
i=1

viM(`− 1)[ai, j] ∈ {0, q, . . . , (p− 1)q}.

By (1), (2) and (3), we have

|M(`)|∑
j=1

∣∣ s∑
i=1

viM(`)[ai, j]
∣∣
n

=

|M(`−1)|∑
j=1

(p− 1)pq

2
+

|M(1)|∑
j=1

∣∣vsM(1)[1, j]
∣∣
n

=
(p`−1 − 1)|M(1)|

p− 1
· (p− 1)pq

2
+ ω(1)

=

{
p`q, if p > 2

2`−1q, if p = 2
.

Case 3. ` ≥ 2 and as < `.
Indeed, by the definition of M` and the rules of Cartesian product, we have

(4)

M(`) = M(`− 1)×A ∪ {0}`−1 ×M(1)

= (M(`− 2)×A ∪ {0}`−2 ×M(1))×A ∪ {0}`−1 ×M(1)

= M(`− 2)×A2 ∪ {0}`−2 ×M(1)×A ∪ {0}`−1 ×M(1)

...

= M(as)×A`−as
`−1⋃
t=as

{0}t ×M(1)×A`−t−1.

Thus by (4) and |A`−as | = p`−as , together with the result in Case 2., we
can derive that

|M(`)|∑
j=1

∣∣ s∑
i=1

viM(`)[ai, j]
∣∣
n

=

|M(as)|∑
j=1

∣∣ s∑
i=1

viM(as)[ai, j]
∣∣
n
· p`−as + 0

= ω(as) · p`−as =

{
p`q, if p > 2

2`−1q, if p = 2
.

3) Since A = −A and M(1) = −M(1), by the definition of M(`), it follows that
M(`) = −M(`). Thus it is easy to infer that

|M(`)|∑
j=1

∣∣− s∑
i=1

viM(`)[ai, j]
∣∣
n

=

|M(`)|∑
j=1

∣∣ s∑
i=1

viM(`)[ai, j]
∣∣
n
.

�

We need the following result which is a straightforward consequence of [12,
Lemma 1] and we omit the similar proof here.

Lemma 2.3. Let G = Cn1
⊕ Cn2

⊕ · · · ⊕ Cnr
with 1 < n1|n2 . . . |nr. Let Hx =

⊕i∈IxCni
, where x ∈ [1, z], z ∈ N+, ∅ 6= Ix ( [1, r] and Ix ∩ Iy = ∅ for any
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x, y ∈ [1, z]. Then

D(G)− D∗(G) ≥
z∑
x=1

(D(Hx)− D∗(Hx)).

3. On non-dispersive sequences over Crn

In this section, we will construct long non-dispersive sequences by M(`)’s.

Theorem 3.1. Let G = Crn, where r ∈ N+ and n ∈ N≥2, and let p be a prime
divisor of n. If ` ∈ N+ such that r ≥ θ(`; p) ≥ 1, then there exists a sequence S
over G of length

|S| = (n− 1)r + (p− 1)` = D∗(G) + (p− 1)`− 1,

such that every nonempty zero-sum subsequence T of S is length of

|T | = ω(`;n, p).

Proof. Set n = pq, where q ∈ [1, n].
Case 1. p > 2.

It follows from r ≥ θ(`; p) ≥ 1 that ` ≥ 1. Let

E(`) =

`−1⋃
t=0

{0}t × {q, (p− 1)q} × {0}`−t−1

and

F(`) =

`−1⋃
t=0

{0}t × {1} × {0}`−t−1.

Let W(`) = M(`)\E(`)∪F(`). Thus by Proposition 2.2, we have |W(`)| = |M(`)|−
2`+ ` = θ(`).

List the elements of W(`) in some fixed but arbitrary order. Let W(`)[i, j]
denote the i-th entry of the j-th element of W(`). For any indices

1 ≤ a1 < · · · < as ≤ ` and vi ∈ [1, p− 1] with i ∈ [1, s],

also by Proposition 2.2 and n = pq, we have

(5)

|W(`)|∑
j=1

∣∣ s∑
i=1

viW(`)[ai, j]
∣∣
n

=

|M(`)|∑
j=1

∣∣ s∑
i=1

viM(`)[ai, j]
∣∣
n
−

s∑
i=1

(|viq|n + |vi(p− 1)q|n) +

s∑
i=1

|vi|n

=ω(`)−
s∑
i=1

n+

s∑
i=1

(n− vi) = ω(`)−
s∑
i=1

vi.

Let Crn = ⊕rj=1〈ej〉 with ord(ej) = n for each j ∈ [1, r]. By r ≥ θ(`; p), we can set

xb =

θ(`)∑
j=1

W(`)[b, j] · ej , where b ∈ [1, `],

and let sequence

S =

r∏
j=1

en−1j

∏̀
b=1

xp−1b .
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Suppose that S1 is a nonempty zero-sum subsequence of S. If xb does not occur in
S1 for any b ∈ [1, `], then S1 is zero-sum free. Thus, for any indices 1 ≤ a1 < · · · <
as ≤ ` and any vi ∈ [1, p− 1] with i ∈ [1, s], we set

S1 =

r∏
j=1

e
uj

j

s∏
i=1

xviai ,

where uj ∈ [0, n− 1]. Since S1 is zero-sum, we have

uj =
∣∣n− s∑

i=1

viW(`)[ai, j]
∣∣
n
, j ∈ [1, θ(`)],

and uj = 0 for j > θ(`). Thus, together with (5) and Proposition 2.2, we obtain
that

|S1| =
s∑
i=1

vi +

|W(`)|∑
j=1

∣∣n− s∑
i=1

viW(`)[ai, j]
∣∣
n

= ω(`),

which completes the proof of this lemma in Case 1.
Case 2. p = 2.

It follows from r ≥ θ(`; 2) ≥ 1 that ` ≥ 2.
Suppose that r ≥ 4 and thus ` ≥ 3. Let

E(`) =

`−1⋃
t=0

{0}t × {q} × {0}`−t−1,

F(`) =

`−2⋃
t=0

{0}t × {q} × {q} × {0}`−t−2,

H(`) =

`−2⋃
t=0

{0}t × {1} × {q} × {0}`−t−2,

I(`) = {q} × {0}`−2 × {q}
and

J(`) = {q} × {0}`−2 × {1}.
Let

(6) W(`) = M(`)\E(`)\F(`) ∪H(`)\I(`) ∪ J(`).

Thus by Proposition 2.2, we have |W(`)| = |M(`)|−`−(`−1)+(`−1)−1+1 = θ(`).
Let

U(`) = M(`)
∖( `−1⋃

t=0

{0}t × {q} × {0}`−t−1
)
.

By (6), for each z ∈ [1, `], we can just change exactly one element U(`)[z, jz] of
U(`) from q to 1, to obtain W(`). Also it should satisfy that, for all W(`)[x, jz]
with z 6= x ∈ [1, `], there exists exactly one element q and the others are 0, and if
z1 6= z2, then jz1 6= jz2 , where z1, z2 ∈ [1, `].

Hence, let indices 1 ≤ a1 < · · · < as ≤ `, for any z ∈ {a1, . . . , as}, then either

s∑
i=1

U(`)[ai, jz] = q and

s∑
i=1

W(`)[ai, jz] = 1,

or
s∑
i=1

U(`)[ai, jz] = 2q and

s∑
i=1

W(`)[ai, jz] = q + 1.



ON THE LOWER BOUNDS OF DAVENPORT CONSTANT 7

So we have ∣∣− s∑
i=1

W(`)[ai, jz]
∣∣
n
−
∣∣− s∑

i=1

U(`)[ai, jz]
∣∣
n

= q − 1.

Together with Proposition 2.2 and n = 2q, we have

(7)

|W(`)|∑
j=1

∣∣n− s∑
i=1

W(`)[ai, j]
∣∣
n

=

|W(`)|∑
j=1

∣∣− s∑
i=1

W(`)[ai, j]
∣∣
n

=

|M(`)|∑
j=1

∣∣− s∑
i=1

M(`)(ai, j)
∣∣
n
−

s∑
i=1

| − q|n +
∑

z∈{a1,...,as}

(q − 1)

=

|M(`)|∑
j=1

∣∣ s∑
i=1

M(`)[ai, j]
∣∣
n
− sq + s(q − 1) = ω(`)− s.

Suppose that ` = 2, let W(2) = {(1, 1)}. It is clear that |W(2)| = θ(2) = 1, and∑|W(2)|
j=1

∣∣n−∑s
i=1 W(2)[ai, j]

∣∣
n

= ω(2)− s for any indices 1 ≤ a1 < · · · < as ≤ `.
Then by the similar proof in Case 1, we complete the proof. �

Definition 3.2. ([8]) Define disc(G) to be the smallest positive integer t, such that
every sequence over G of length at least t has two nonempty zero-sum subsequences
of distinct lengths.

By Theorem 3.1, we can derive the following corollary immediately.

Corollary 3.3. Let G = Crn, where r ∈ N+ and n ∈ N≥2, and let p be a prime
divisor of n. If ` ∈ N+ such that r ∈ [θ(`), θ(`+ 1)), then disc(G) ≥ (n− 1)r+ (p−
1)`+ 1.

Note that, for n = 2, the above bound equals disc(G) (see [8, Theorem 1.3]).

4. On the lower bounds of D(G)

By Lemma 4.1 we connect the lower bounds of D(G) to special non-dispersive
sequences. This lemma is a crucial one to this paper.

Lemma 4.1. Let G = G1 ⊕ · · · ⊕ Gt ⊕ Cm, where t ∈ N+, m ∈ N≥2, and
G1, . . . , Gt are finite abelian groups. For every i ∈ [1, t], let Si be a non-dispersive
sequence over Gi which only contains zero-sum subsequences of length xi. If y =∑t
i=1 gcd(xi,m) < m, then D(G) ≥

∑t
i=1 |Si|+m− y.

Proof. By results from the elementary number theory, for every xi with i ∈ [1, t],
there exists a ui ∈ [1,m − 1] such that |xiui|m = gcd(xi,m). Let Cm = 〈e〉.
Consider the following sequence

S = (S1 + u1e)(S2 + u2e) . . . (St + ute)e
m−y−1.

Suppose that S has a non-empty zero-sum subsequence T , and

T = T1T2 . . . Tte
z with Ti|(Si + uie), i ∈ [1, t] and 0 ≤ z ≤ m− y − 1.

We observe that the Si’s and e are independent and Si only contains zero-sum
subsequences of length xi. Thus |Ti| = xi or |Ti| = 0, for i ∈ [1, t]. And the sum of
T is ve, where

v = ||T1|u1 + |T2|u2 + · · ·+ |Tt|ut + z|m.
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Since T is non-empty and

|x1u1|m + |x2u2|m + · · ·+ |xtut|m + z

=

t∑
i=1

gcd(xi,m) + z = y + z ≤ m− 1,

it follows that 0 < v < m and thus T is not zero-sum. This contradicts the definition
of T . Thus S is zero-sum free and D(G) ≥ |S|+ 1 =

∑t
i=1 |Si|+m− y. �

By Lemma 4.1, Theorem 3.1 and Lemma 2.3, we are able to construct long zero-
sum free sequences over general abelian groups. Next, we would like to provide
Theorem 4.3 and Corollary 4.4 to easily estimate the growth of D(G)− D∗(G) for
large r and exp(G).

Remark 4.2. Let G = Crn ⊕ Ckn be a non-p-group with n, k ∈ N≥2. Then there
exist p and k1 such that p be a prime divisor of n, k1 ∈ N≥2 be a divisor of k with
gcd(p, k1) = 1. We use this remark to guarantee that the result in Theorem 4.3 is
not vacuous.

Proof. If n = pt > 1 is a prime power, since G is a non-p-group, there exists
1 < k1|k with gcd(p, k1) = 1. If n has at least two distinct prime factors p1 and
p2. Consider a prime factor p3 of k, then either gcd(p1, p3) = 1 or gcd(p2, p3) = 1.
Thus the existence is proved.

�

Theorem 4.3. Let G = Crn ⊕ Ckn be a non-p-group with n, k ∈ N≥2. Let p be a
prime divisor of n, k1 ∈ N≥2 be a divisor of k, with gcd(p, k1) = 1, and kn = k1m
for some m ∈ N. If ` ∈ N+ and t ∈ [1, k1 − 1] with r ≥ tθ(`) ≥ 1, then

D(G) ≥ D∗(G) + t(p− 1)`− tm.

Proof. Let (e1, . . . , er) be a basis of Crn with ord(e1) = · · · = ord(er) = n. Let

Gj = ⊕jθ(`)i=1+(j−1)θ(`)〈ei〉, where j ∈ [1, t− 1],

and let Gt = ⊕ri=1+(t−1)θ(`)〈ei〉. By Theorem 3.1, there exists a sequence Sj over

each Gj with

|Sj | = D∗(Gj)− 1 + (p− 1)`,

which only contains zero-sum subsequences of a unique length ω(`). Hence, by
gcd(p, k1) = 1, we have

gcd(ω(`), kn) ≤ gcd(p`−1n, kn) = n gcd(p`−1, k)

= n gcd

(
p`−1,

k

k1

)
≤ nk

k1
= m.

And
∑t
j=1 gcd(ω(`), kn) = tm < kn. By Lemma 4.1, it follows that

D(G) ≥
t∑

j=1

|Sj |+ kn−
t∑

j=1

gcd(ω(`), kn)

≥
t∑

j=1

|Sj |+ kn−mt = D∗(G) + ((p− 1)`−m)t.

�
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Corollary 4.4. Let G = Crn ⊕ Ckn be a non-p-group with n, k ∈ N≥2. Let p be a
prime divisor of n, k1 ∈ N≥2 be a divisor of k, with gcd(p, k1) = 1, and kn = k1m
for some m ∈ N. For any integer t ∈ [1, k1 − 1], we have

(8) D(G) > D∗(G) +
t(p− 1)

log p
log r − t(p− 1)(logp t+ 1)− tm.

Proof. In Remark 4.2, we proved the existence of p and k1. For every r ∈ N+, there
exists an ` ∈ N+ such that θ(`) ≥ 1 and r ∈ [tθ(`), tθ(` + 1)). By the definition
of θ(`), we have θ(` + 1) < p`+1. Thus r < tθ(` + 1) < tp`+1. It follows that
` > logp

r
t − 1. By Theorem 4.3, we have

D(G) ≥ D∗(G) + t((p− 1)`−m)

> D∗(G) + t
(

(p− 1)
(

logp
r

t
− 1
)
−m

)
= D∗(G) +

t(p− 1)

log p
log r − t(p− 1)(logp t+ 1)− tm.

�

Remark 4.5. Let G = Crn ⊕ Ckn be a non-p-group with n, k ∈ N≥2. In Corollary
4.4, let t = 1, we have

(9) D(G) > D∗(G) + (p− 1) logp r −m− p+ 1.

So D(G)−D∗(G) grows at least logarithmically with respect to r. And this inequality
does not depend on the size of k1. That is to say, it can be D(G)− D∗(G) > 0 for
arbitrarily large exponent of G.

We have D(G) − D∗(G) > t
(
(p− 1)

(
logp

r
t − 1

)
−m

)
by Corollary 4.4. Fix

p and m. Let r be larger than some constant, by (9), then there always exists
t ∈ [1, k1 − 1] such that D(G)− D∗(G) > 0. Let t = c1r, where c1 ∈ (0, 1) is a real
number such that (p− 1)

(
logp

r
t − 1

)
−m > 0. Then for sufficiently large k1 = k1(r)

such that t ∈ [1, k1], by Corollary 4.4, we always have D(G)− D∗(G) > c2r, where
c2 > 0 is a constant determined by p, m and c1. Note that c1 is bounded by p and

m. See (12) for more information about D(G)−D∗(G)
r .

On the other hand, fix n and k, for sufficiently large r, we can let t = k1−1 and
p be as large as possible to get larger D(G)− D∗(G) in (8).

Next, we give a general lower bound to abelian non-p-groups and express the
lower bound of D(G)−D∗(G) by the rank and the exponent of G. In Theorem 4.6,
we define log(0) = −∞ for the case of |G| = mr.

Theorem 4.6. Let G be a finite abelian non-p-group of rank r ∈ N+ and exponent
m ∈ N≥2. Then

D(G) ≥ D∗(G) + max{log2 log
mr

|G|
− 2 log2 log

m

2
−m+ log2 log 2 + 1, 0}.

Proof. D(G) ≥ D∗(G) is trivial.
Note that any abelian non-p-group G’s exponent m ≥ 6. So log log m

2 > 0. If
|G| = mr, since we define that log(0) = −∞, the inequality in this theorem holds.

Suppose that |G| 6= mr and

G = Cx1
n1
⊕ · · · ⊕ Cxt

nt
⊕ Cxm

with n1| . . . |nt|m and 1 < n1 < · · · < nt < m. Let xa = max{xi, i ∈ [1, t]}. By
Lemma 2.3, (9) and p−1

log p ≥
1

log 2 , we have

(10) D(G) > D∗(G) + log2 xa −m+ 1.
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Since m ≥ 2nt ≥ 22nt−1 ≥ · · · ≥ 2tn1, we have t ≤ log2
m
n1

. Together with
xat ≥ x1 + · · ·+ xt = r − x. We derive that

(11) xa ≥
r − x

log2
m
n1

.

By

mr

|G|
=

mr

nx1
1 n

x2
2 . . . nxt

t m
x
≤
(
m

n1

)r−x
,

we have r − x ≥ log m
n1

mr

|G| . Together with (11), we have

xa ≥
log m

n1

mr

|G|

log2
m
n1

=
log mr

|G| log 2

log2 m
n1

.

Then by (10), it follows that

D(G) > D∗(G) + log2

log mr

|G| log 2

log2 m
n1

−m+ 1

≥ D∗(G) + log2 log
mr

|G|
− 2 log2 log

m

2
−m+ log2 log 2 + 1.

Thus the theorem is proved. �

So far, all the known groupsG with D(G)−D∗(G) > 0 are non-p-groups satisfying
|G| < exp(G)r(G). We would like to generalize this to a corollary as follows.

Corollary 4.7. Given a non-prime power m > 0. Let G be abelian groups with
exponent m and rank r, then for each N > 0 there exists an ε = ε(N ;m) > 0 such

that if |G|mr < ε, then D(G)− D∗(G) > N .

Proof. This follows directly from Theorem 4.6. �

Remark 4.8. Let G = Crn ⊕ Ckn be a non-p-group with n, k ∈ N≥2, we can
consider the small rank r such that D(G) > D∗(G). Theorem 4.3 shows that if
(p−1)`−m > 0, then D(G) > D∗(G). Thus, let ` = b m

p−1c+1. And r = θ(b m
p−1c+1)

is a small r such that D(G) > D∗(G).

The groups G of small rank with D(G) > D∗(G) were viewed as “the interesting
groups” on page 148 in [12]. We give following corollary about the small rank.

Corollary 4.9. 1) Let G = Crp ⊕ Ckp with p odd prime and gcd(p, k) = 1. If
r ≥ 2p, then D(G)− D∗(G) ≥ p− 2 > 0. Thus

(12) sup
all finite abelian group G

D(G)− D∗(G)

r
≥ 1

2
.

2) Let G = Cr2 ⊕C2tk with k > 2 odd and integer t ≥ 1. If r ≥ 22
t+1− 2t− 2, then

D(G) ≥ D∗(G) + 1.

Proof. 1) Let ` = 2, then θ(`) = 2p. By Theorem 4.3, if r ≥ 1 · θ(`) = 2p, then
D(G)− D∗(G) ≥ (p− 1)`− p = p− 2 > 0.

2) Let ` = 2t+1 and p = 2, then θ(`) = 22
t+1−2−2t. By Theorem 4.3, if r ≥ θ(`),

then D(G) ≥ D∗(G) + `− 2t = D∗(G) + 1.
�

In particular, let G = Cr2⊕C2k with k ≥ 3 odd. If r ≥ 4, then D(G)−D∗(G) ≥ 1.
Note that for abelian group G = C4

2⊕C2k with odd k ≥ 70, it is proved that D(G) =

D∗(G)+1 (see [20]). In addition, it is interesting to determine sup D(G)−D∗(G)
r , where

G runs over all finite abelian groups.
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5. Concluding remarks

Open problem. By Lemma 2.3, a natural question occurs. What are the groups
G, with the invariant factor decomposition

G = Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr with 1 < n1|n2 . . . |nr,
such that there do not exist groups

Hx = ⊕i∈IxCni , with ∅ 6= Ix ( [1, r] and Ix ∩ Iy = ∅ for any x, y ∈ [1, z],

satisfying that D(G)− D∗(G) =
∑z
x=1(D(Hx)− D∗(Hx)).
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